ITT

Heavy Industry Products

Engineered for life
Applications:

- Amusement ride emergency stops
- Transportation safety stops
- Ladle transfer cars
- Coil upenders/downenders
- Rolling mill chock separators
- Furnace slab bumpers
- Hot strip mill down-coiler
- Re-heat furnace entry end shock absorber
- Gantry/Stacker Cranes
Enidine, a preferred source for energy absorption and vibration isolation solutions, offers a full range of Heavy Duty (HD) and Heavy Industry (HI) products, each designed to protect equipment from large impacts in applications where consistent deceleration and safety is required.

<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Selection</td>
</tr>
<tr>
<td>Company Overview ... 1</td>
</tr>
<tr>
<td>New Technologies and Enhancements 2</td>
</tr>
<tr>
<td>Theory of Energy Absorption 3-4</td>
</tr>
<tr>
<td>Sizing Examples .. 5-8</td>
</tr>
<tr>
<td>Energy Absorption Products</td>
</tr>
<tr>
<td>HD/HDA Series (Heavy Duty Shock Absorbers)</td>
</tr>
<tr>
<td>Overview ... 9-10</td>
</tr>
<tr>
<td>Adjustment Techniques 11</td>
</tr>
<tr>
<td>Ordering Information .. 12</td>
</tr>
<tr>
<td>HD/HDA Technical Data, Accessories 13-27</td>
</tr>
<tr>
<td>Notes .. 28</td>
</tr>
<tr>
<td>HI Series (Heavy Industry Buffers)</td>
</tr>
<tr>
<td>Overview ... 29</td>
</tr>
<tr>
<td>Ordering Information .. 30</td>
</tr>
<tr>
<td>HI Technical Data, Accessories 31-32</td>
</tr>
<tr>
<td>Jarret Series</td>
</tr>
<tr>
<td>Overview .. 33</td>
</tr>
<tr>
<td>Visco-elastic Technology Information 34</td>
</tr>
<tr>
<td>BC1N, BC5 and LR Technical Data/Application Workshes 35-42</td>
</tr>
<tr>
<td>Application Worksheet 43</td>
</tr>
</tbody>
</table>

Need Assistance? Enidine is ready to answer your questions, feel free to contact us at:

Phone: Toll Free - 1.800.852.8508
 Direct - 1.716.662.1900

Fax: General - 1.716.662.1909
 Industrial - 1.716.662.0406

Email: industrialsales@enidine.com

Online: www.enidine.com
Overview

With its world headquarters located in Orchard Park, New York, USA, ENIDINE Incorporated is a world leader in the design and manufacture of standard and custom energy absorption and vibration isolation product solutions within the Industrial, Aerospace, Defense, Marine and Rail markets. Product ranges include shock absorbers, gas springs, rate controls, air springs, wire rope isolators, heavy industry buffers and emergency stops. With facilities strategically located throughout the world and in partnership with our vast global network of distributors, Enidine Incorporated continues to strengthen its presence within marketplace.

Founded in 1966, Enidine Incorporated now has close to 600 employees located throughout the globe in the United States, Germany, France, Japan, China and Korea. With a team of professionals in engineering, computer science, manufacturing, production and marketing our employees provide our customers the very best in service and application solutions.

"Enidine is widely recognized as the preferred source for energy absorption and vibration isolation products."

From Original Equipment Manufacturers (OEM) to aftermarket applications, Enidine offers a unique combination of product selection, engineering excellence and technical support to meet even the toughest energy absorption application requirements.

Global Manufacturing and Sales Facilities offer our customers:

- Highly Trained Distribution Network
- State-of-the Art Engineering Capabilities
- Custom Solution Development
- Customer Service Specialists
- Multiple Open Communication Channels

If you are unsure whether one of our standard products meets your requirements, feel free to speak with one of our technical representatives toll-free at 1-800-852-8508, or contact us via e-mail at techsales@enidine.com.

Products/Engineering/Technical Support

Enidine continually strives to provide the widest selection of shock absorbers and rate control products in the global marketplace. Through constant evaluation and testing, we bring our customers the most cost effective products with more features, greater performance and improved ease of use.
Enidine engineers continue to monitor and influence trends in the motion control industry, allowing us to remain at the forefront of new energy absorption and vibration isolation product development.

Our experienced engineering team has designed custom solutions for a wide variety of challenging applications, including automated warehousing systems and shock absorbers for hostile industrial environments such as glass manufacturing, among others. These custom application solutions have proven to be critical to our customers’ success. Let Enidine engineers do the same for you.

Custom designs are not an exception at Enidine, they are an integral part of our business. Should your requirements fit outside of our standard product range, Enidine engineers can assist in developing special finishes, components, hybrid technologies and new designs to ensure a “best-fit” product solution customized to your exact specifications.

New technologies and enhancements
Research and Development

A talented engineering staff works to design and maintain the most efficient energy absorption product lines available today, using the latest engineering tools:

- Solid Modeling
- 3-D CAD Drawings
- 3-D Soluble Support Technology
- Finite Element Analysis
- Complete Product Verification Testing Facility

New product designs get to market fast because they can be fully developed in virtual environments before a prototype is ever built. This saves time and lets us optimize the best solution using real performance criteria.

Global Service and Support

Enidine offers its customers a global network of customer service staff technical sales personnel that are available to assist you with all of your application needs.

- Operating with lean manufacturing and cellular production, Enidine produces higher quality custom and standard products with greater efficiency and within shorter lead times.

- An authorized Global Distribution Network is trained regularly by ENIDINE staff on new products and services ensuring they are better able to serve you.

- Global operations in United States, Germany, France, China, Japan and Korea.

- A comprehensive, website full of application information, technical data, sizing examples and information to assist in selecting the product that’s right for you.

Our website also features a searchable worldwide distributor lookup to help facilitate fast, localized service. Contact us today for assistance with all of your application needs.

Our global customer service and technical sales departments are available to assist you find the solution that’s right for your application needs. Call us at 1-800-852-8508 or email us at industrialsales@enidine.com and let us get started today.

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-852-8508 Fax: 1-716-662-0406
Overview

As companies strive to increase productivity by operating machinery at higher speeds, often the results are increased noise, damage to machinery/products, and excessive vibration. At the same time, safety and machine reliability are decreased. A variety of products are commonly used to solve these problems. However, they vary greatly in effectiveness and operation. Typical products used include rubber bumpers, springs, cylinder cushions and shock absorbers. The following illustrations compare how the most common products perform:

All moving objects possess kinetic energy. The amount of energy is dependent upon weight and velocity. A mechanical device that produces forces diametrically opposed to the direction of motion must be used to bring a moving object to rest.

Rubber bumpers and springs, although very inexpensive, have an undesirable recoil effect. Most of the energy absorbed by these at impact is actually stored. This stored energy is returned to the load, producing rebound and the potential for damage to the load or machinery. Rubber bumpers and springs initially provide low resisting force which increases with the stroke.

Cylinder cushions are limited in their range of operation. Most often they are not capable of absorbing energy generated by the system. By design, cushions have a relatively short stroke and operate at low pressures resulting in very low energy absorption. The remaining energy is transferred to the system, causing shock loading and vibration.

Shock absorbers provide controlled, predictable deceleration. These products work by converting kinetic energy to thermal energy. More specifically, motion applied to the piston of a hydraulic shock absorber pressurizes the fluid and forces it to flow through restricting orifices, causing the fluid to heat rapidly. The thermal energy is then transferred to the cylinder body and harmlessly dissipated to the atmosphere.

The advantages of using shock absorbers include:

1. Longer Machine Life – The use of shock absorbers significantly reduces shock and vibration to machinery. This eliminates machinery damage, reduces downtime and maintenance costs, while increasing machine life.

2. Higher Operating Speeds – Machines can be operated at higher speeds because shock absorbers control or gently stop moving objects. Therefore, production rates can be increased.

3. Improved Production Quality – Harmful side effects of motion, such as noise, vibration and damaging impacts, are moderated or eliminated so the quality of production is improved. Therefore, tolerances and fits are easier to maintain.

4. Safer Machinery Operation – Shock absorbers protect machinery and equipment operators by offering predictable, reliable and controlled deceleration. They can also be designed to meet specified safety standards, when required.

5. Competitive Advantage – Machines become more valuable because of increased productivity, longer life, lower maintenance costs and safer operation.

Automotive vs. Industrial Shock Absorbers

It is important to understand the differences that exist between the standard automotive-style shock absorber and the industrial shock absorber.

The automotive style employs the deflective beam and washer method of orificing. Industrial shock absorbers utilize single orifice, multi-orifice and metering pin configurations. The automotive type maintains a damping force which varies in direct proportion to the velocity of the piston, while the damping force in the industrial type varies in proportion to the square of the piston velocity. In addition, the damping force of the automotive type is independent of the stroke position while the damping force associated with the industrial type can be designed either dependent or independent of stroke position.
Equally as important, automotive-style shock absorbers are designed to absorb only a specific amount of input energy. This means that, for any given geometric size of automotive shock absorber, it will have a limited amount of absorption capability compared to the industrial type.

This is explained by observing the structural design of the automotive type and the lower strength of materials commonly used. These materials can withstand the lower pressures commonly found in this type. The industrial shock absorber uses higher strength materials, enabling it to function at higher damping forces.

Adjustment Techniques

A properly adjusted shock absorber safely dissipates energy, reducing damaging shock loads and noise levels. For optimum adjustment setting see useable adjustment setting graphs. Watching and "listening" to a shock absorber as it functions aids in proper adjustment.

To correctly adjust a shock absorber, set the adjustment knob at zero (0) prior to system engagement. Cycle the mechanism and observe deceleration of the system.

If damping appears too soft (unit strokes with no visual deceleration and bangs at end of stroke), move indicator to next largest number. Adjustments must be made in gradual increments to avoid internal damage to the unit (e.g., adjust from 0 to 1, not 0 to 4).

Increase adjustment setting until smooth deceleration or control is achieved and negligible noise is heard when the system starts either to decelerate or comes to rest.

When abrupt deceleration occurs at the beginning of the stroke (bang at impact), the adjustment setting must be moved to a lower number to allow smooth deceleration.

If the shock absorber adjustment knob is set at the high end of the adjustment scale and abrupt deceleration occurs at the end of the stroke, a larger unit may be required.

Shock Absorber Performance When Weight or Impact Velocity Vary

When conditions change from the original calculated data or actual input, a shock absorber’s performance can be greatly affected, causing failure or degradation of performance. Variations in input conditions after a shock absorber has been installed can cause internal damage, or at the very least, can result in unwanted damping performance. Variations in weight or impact velocity can be seen by examining the following energy curves:

Varying Impact Weight: Increasing the impact weight (impact velocity remains unchanged), without reorificing or readjustment will result in increased damping force at the end of the stroke. Figure 1 depicts this undesirable bottoming peak force. This force is then transferred to the mounting structure and impacting load.

Varying Impact Velocity: Increasing impact velocity (weight remains the same) results in a radical change in the resultant shock force. Shock absorbers are velocity conscious products; therefore, the critical relationship to impact velocity must be carefully monitored. Figure 2 depicts the substantial change in shock force that occurs when the velocity is increased. Variations from original design data or errors in original data may cause damage to mounting structures and systems, or result in shock absorber failure if the shock force limits are exceeded.
EXAMPLE 1: Vertical Free Falling Weight

STEP 1: Application Data
- (W) Weight = 5,000 lbs.
- (H) Height = 20 in.
- (C) Cycles/Hr = 2

STEP 2: Calculate kinetic energy
- \(E_{k} = \frac{W \cdot H}{2} \)
- \(E_{k} = 5,000 \times 20 = 100,000 \text{ in-lbs.} \)

Assume Model HD 2.0 x 10 is adequate (Page 15).

STEP 3: Calculate work energy
- \(E_{w} = \frac{W \cdot H}{2} \)
- \(E_{w} = 5,000 \times 20 = 100,000 \text{ in-lbs.} \)

STEP 4: Calculate total energy per cycle
- \(E_{t} = E_{k} + E_{w} \)
- \(E_{t} = 100,000 + 100,000 \)
- \(E_{t} = 200,000 \text{ in-lbs./c} \)

STEP 5: Calculate total energy per hour
- \(E_{t} = E_{t} \times C \)
- \(E_{t} = 200,000 \times 2 \)

STEP 6: Calculate impact velocity and confirm selection
- \(V = \sqrt{\frac{2 \cdot E_{t}}{W}} \)
- \(V = \sqrt{2 \times 200,000} \)
- \(V = 124 \text{ in./sec.} \)

Model HD 2.0 x 10 is adequate.

EXAMPLE 2: Free Moving Load Down an Inclined Plane

STEP 1: Application Data
- (W) Weight = 2,000 lbs.
- (H) Height = 8 in.
- (α) Angle of incline = 30°
- (C) Cycles/Hr = 60

STEP 2: Calculate kinetic energy
- \(E_{k} = W \times H \)
- \(E_{k} = 2,000 \times 8 = 16,000 \text{ in-lbs.} \)

Assume Model HD 1.5 x 2 is adequate (Page 13).

STEP 3: Calculate work energy
- \(E_{w} = W \times \sin(\alpha) \)
- \(E_{w} = 2,000 \times .5 \)

STEP 4: Calculate total energy per cycle
- \(E_{t} = E_{k} + E_{w} \)
- \(E_{t} = 16,000 + 2,000 \)
- \(E_{t} = 18,000 \text{ in-lbs./c} \)

STEP 5: Calculate total energy per hour
- \(E_{t} = E_{t} \times C \)
- \(E_{t} = 18,000 \times 60 \)

STEP 6: Calculate impact velocity and confirm selection
- \(V = \sqrt{\frac{2 \cdot E_{t}}{W}} \)
- \(V = \sqrt{2 \times 18,000} \)
- \(V = 77 \text{ in./sec.} \)

Model HD 1.5 x 2 is adequate.
Shock Absorber Sizing Examples
Typical Shock Absorber Applications

Overview

STEP 1: Application Data
(W) Weight = 20,000 lbs.
(V) Velocity = 20 in./sec.
(C) Cycles/Hr = 4

STEP 2: Calculate kinetic energy

\[
E_K = \frac{W}{722} \times V^2 \\
E_K = \frac{20,000}{722} \times 20^2 \\
E_K = 10,364 \text{ in-lbs.}
\]

Assume Model HD 1.5 x 2 is adequate (Page 13).

If there is no additional drive force, proceed to step 4 and \(E_w = 0 \). If the application is driven by a cylinder, proceed to step 3a. If the application is driven by a motor proceed to step 3b.

STEP 3a: Calculate work energy:

(d) Cylinder bore diameter = 6 in.
(P) Cylinder pressure = 80 psi

\[
F_D = \frac{.7854 \times d^2 \times P}{20} \\
F_D = \frac{.7854 \times 6^2 \times 80}{20} \\
F_D = 2,262 \text{ lbs.}
\]

\[
E_w = F_D \times S \\
E_w = 2,262 \times 2 \\
E_w = 4,524 \text{ in-lbs.}
\]

STEP 3b: Calculate work energy:

(Hp) Motor Horsepower = 5 Hp

\[
F_D = \frac{19,800 \times \text{Hp}}{20} \\
F_D = \frac{19,800 \times 5}{20} \\
F_D = 4,950 \text{ in-lbs.}
\]

\[
E_w = F_D \times S \\
E_w = 4,950 \times 2 \\
E_w = 9,900 \text{ in-lbs.}
\]

STEP 4: Calculate total energy per cycle

Note: Using Calculations from 3a

\[
E_T = E_K + E_w \\
E_T = 10,364 + 4,524 \\
E_T = 14,888 \text{ in-lbs.}
\]

STEP 5: Calculate total energy per hour

\[
E_{T_H} = E_T \times C \\
E_{T_H} = 14,888 \times 4 \\
E_{T_H} = 59,552 \text{ in-lbs./hr}
\]

Model HD 1.5 x 2 is adequate.
Shunt Absorber Sizing Examples
Typical Shock Absorber and Crane Applications

Overview

Please note:
Unless instructed otherwise, Enidine will always calculate with:
- 100% velocity \(v \)
- 100% propelling force \(F_D \)

| Application | Crane A against Solid Stop
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>(V_r = V_A)</td>
</tr>
<tr>
<td>Impact weight per buffer</td>
<td>(W_D = W)</td>
</tr>
</tbody>
</table>

| Application | Crane A against Crane B
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>(V_r = V_A + V_B)</td>
</tr>
<tr>
<td>Impact weight per buffer</td>
<td>(W_D = W_A \cdot W_B / (W_A + W_B))</td>
</tr>
</tbody>
</table>

| Application | Crane A against Solid Stop
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>(V_r = V_A)</td>
</tr>
<tr>
<td>Impact weight per buffer</td>
<td>(W_D = W)</td>
</tr>
</tbody>
</table>

| Application | Crane B against Crane C
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>(V_r = V_B + V_C)</td>
</tr>
<tr>
<td>Impact weight per buffer</td>
<td>(W_D = W_B \cdot W_C / (W_B + W_C))</td>
</tr>
</tbody>
</table>

| Application | Crane C against Solid Stop with Buffer
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td>(V_r = V_C)</td>
</tr>
<tr>
<td>Impact weight per buffer</td>
<td>(W_D = W_i)</td>
</tr>
</tbody>
</table>

Crane A Per Buffer
- Propelling Force Crane: lbs.
- Propelling Force Trolley: lbs.
- Weight of Crane: lbs.
- Weight of Trolley: lbs.
- Distance \(X_{min} \): in.
- Distance \(X_{max} \): in.
- Distance \(Y_{min} \): in.
- Distance \(Y_{max} \): in.
- Crane Velocity: in./sec.
- Trolley Velocity: in./sec.

Crane B Per Buffer
- Propelling Force Crane: lbs.
- Propelling Force Trolley: lbs.
- Weight of Crane: lbs.
- Weight of Trolley: lbs.
- Distance \(X_{min} \): in.
- Distance \(X_{max} \): in.
- Distance \(Y_{min} \): in.
- Distance \(Y_{max} \): in.
- Crane Velocity: in./sec.
- Trolley Velocity: in./sec.

Crane C Per Buffer
- Propelling Force Crane: lbs.
- Propelling Force Trolley: lbs.
- Weight of Crane: lbs.
- Weight of Trolley: lbs.
- Distance \(X_{min} \): in.
- Distance \(X_{max} \): in.
- Distance \(Y_{min} \): in.
- Distance \(Y_{max} \): in.
- Crane Velocity: in./sec.
- Trolley Velocity: in./sec.

Hi-HD-Catalog: HD-HI-Catalog 3/20/09 1:30 PM Page 7
Shock Absorber Sizing Examples

Typical Shock Absorber and Crane Applications

Please note that this example is not based on any particular standard. The slung load can swing freely, and is therefore not taken into account in the calculation.

<table>
<thead>
<tr>
<th>Given Values</th>
<th>Calculation Example for Harbor Cranes as Application 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Weight of Crane:</td>
<td>837,750 lbs.</td>
</tr>
<tr>
<td>Weight of Trolley:</td>
<td>99,200 lbs.</td>
</tr>
<tr>
<td>Span:</td>
<td>x = 3,940 in.</td>
</tr>
<tr>
<td>Trolley Impact Distance:</td>
<td>z = 3,940 in.</td>
</tr>
<tr>
<td>Crane Velocity:</td>
<td>V\text{Crane} = 60 \text{ in./sec.}</td>
</tr>
<tr>
<td>Required Stroke:</td>
<td>24 in.</td>
</tr>
<tr>
<td>Trolley Velocity:</td>
<td>V\text{Trolley} = 160 \text{ in./sec.}</td>
</tr>
<tr>
<td>Required Stroke:</td>
<td>40 in.</td>
</tr>
</tbody>
</table>

Bridge Weight per Rail

\[W_{\text{max}} = \text{Bridge Weight per Rail} \times \text{Trolley Weight in Impact Position} \]

\[W_{\text{max}} = \frac{837,750 \text{ lbs.} - 99,200 \text{ lbs.}}{3,940 \text{ in.}} \]

\[W_{\text{max}} = 458,404 \text{ lbs.} \]

Kinetic Energy

\[E_k = \frac{W_{\text{max}} \times V_r^2}{2} \]

\[E_k = 458,404 \text{ lbs.} \times (60 \text{ in./sec.})^2 \]

\[E_k = 2,137,635 \text{ in-lbs.} \]

Selecting for required 24-inch stroke:

HD 5.0 x 24, maximum shock force ca. 104,786 lbs = F_s

\[E_k = \frac{W_D \times V_r^2}{2} \]

\[W_D = 99,200 \text{ lbs.} \]

\[E_k = \frac{W_D \times V_r^2}{2} \]

\[E_k = 49,600 \text{ lbs.} \times (160 \text{ in./sec.})^2 \]

\[E_k = 1,644,767 \text{ in-lbs.} \]

Selecting for required 40-inch stroke:

HD 4.0 x 40, maximum shock force ca. 48,376 lbs = F_s

\[E_k = \frac{W_D \times V_r^2}{2} \]

\[W_D = 99,200 \text{ lbs.} \]

\[E_k = \frac{W_D \times V_r^2}{2} \]

\[E_k = 49,600 \text{ lbs.} \times (160 \text{ in./sec.})^2 \]

\[E_k = 1,644,767 \text{ in-lbs.} \]
Heavy Duty Shock Absorbers
HD, HDA Series

Overview

Enidine Heavy Duty Series (HD/HDA) large-bore hydraulic shock absorbers protect equipment from large impacts in applications such as automated storage and retrieval systems, as well as overhead bridge and trolley cranes. They are available in a wide variety of stroke lengths and damping characteristics to increase equipment life and meet stringent deceleration requirements.

HD Series
Custom-orificed design accommodates specified damping requirements. Computer generated output performance simulation is used to optimize the orifice configuration. Available in standard bore dimensions of up to 6 in. (150mm) and strokes over 60 in. (1525mm).

HDA Series
Adjustable units enable the user to modify shock absorber resistance to accommodate load velocity variations, with strokes up to 12in. (305mm). Standard adjustable configurations available. Special bore sizes and strokes for both HD and HDA Series models are available upon request.

Features and Benefits

- Compact design smoothly and safely decelerates large energy capacity loads up to 8,000,000 in-lbs. per cycle (903 880 Nm)
- Engineered to meet OSHA, AISE, CMMA and other safety specifications such as DIN and FEM.
- Internal air charged bladder accumulator replaces mechanical return springs, providing shorter overall length and reduced weight.
- Wide variety of optional configurations including bellows, clevis mounts and safety cables.
- Available in standard adjustable or custom-orificed non-adjustable models.
- Zinc plated external components provide enhanced corrosion protection.
- Epoxy painting and special rod materials are available for use in highly corrosive environments.
- All sizes are fully field repairable.
- Piston rod extension sensor systems available for reuse safety requirements.
- Incorporating optional fluids and seal packages can expand standard operating temperature range from 15°F to 140°F to -30°F to 210°F (-10°C to 60°C) to (-35°C to 100°C).
The Enidine HD/HDA Series is a large-bore, multi-orifice family of shock absorbers which incorporates a double cylinder arrangement with space between the concentric shock tube and cylinder, and a series of orifice holes drilled down the length of the shock tube wall.

During piston movement, the check ring is seated and oil is forced through the orifices in the shock tube wall, into the gas charged bladder/accumulator area, and behind the piston head. The orifice area decreases as the piston moves and closes the orifice holes. The bladder/accumulator is also compressed by the oil during the compression stroke, which compensates for the fluid displaced by the piston rod during compression.

During repositioning, the pressure from the bladder/accumulator pushes the piston rod outward. This unseats the check ring and permits oil to flow rapidly through the piston head into the front of the shock tube. The unique gas-charged bladder accumulator replaces mechanical return springs, decreasing overall product size and weight.

The HD/HDA Series can provide conventional, progressive or self-compensating damping. Their compact, heavy-duty design safely and effectively decelerates large moving loads, with energy capacities of up to 8,000,000 in-lbs. per cycle (903 880 Nm).

HD/HDA Sizing Examples

1. Determine load weight (lbs. or Kg), impact velocity (in./sec or m/s), propelling force (lbs. or N) if any, cycles per hour and stroke (in. or mm) required.
2. Calculate total energy per cycle (in.-lbs./c or Nm/c) and total energy per hour (in.-lbs./hr or Nm/hr). Consult this catalog’s sizing examples (pages 5-6) for assistance, if required.
3. Compare the calculated total energy per cycle (in.-lbs./c or Nm/c) and total energy per hour (in.-lbs./hr or Nm/hr), to the values listed in the HD/HDA Series Engineering Data charts. For HDA selection, the impact velocity must be below 130 in./sec (3.3 m/s).
4. Select the appropriate HD/HDA Series model.

Example: Horizontal Application

1. Weight (W): 55,000 lbs. (24 950 Kg)
 Velocity (V): 43 in./sec (1.1 m/s)
 Propelling Force (Fp): 6,700 lbs. (29 803 N)
 Cycles/Hour (C): 10 cycles/hr
 Stroke (S): 5 in. (127 mm)
2. Total Energy/Cycle (E): 165,229 in.-lbs./c (18 6668 Nm/c)
 Total Energy/Hour (ETC): 1,652,290 in.-lbs./hr (18 6668 Nm/hr)
3. Compare total energy per cycle and total energy per hour to the HD/HDA Series Engineering Data charts (pages 13-27).
4. Selection: HD 3.0 x 5 (HDA is not appropriate because maximum in.-lbs. per cycle (Nm per cycle) are exceeded).
After properly sizing an HDA shock absorber, the useable range of adjustment settings can be determined:

1. Locate the intersection point of the application’s impact velocity and the HDA model graph line.
2. The intersection is the maximum adjustment setting to be used. Adjustments exceeding this setting could overload the shock absorber.
3. The useable adjustment setting range is from setting 1 to the MAXIMUM adjustment setting as determined in step 2.

EXAMPLE: HDA Series

1. Impact Velocity: 80 in./sec. (2 m/s)
2. Intersection Point: Adjustment Setting 3
3. Useable Adjustment Setting Range: 1 to 3

Optional Piston Rod Return Sensor

- Magnetic proximity sensor indicates complete piston rod return with 10-foot long cable.
- If complete piston rod does not return the circuit remains open. This can be used to trigger a system shut-off.
- Contact Enidine for other available sensor types.

Sensor Specifications

- Voltage 10 - 30V
- Load Current ≤ 200 mA
- Leakage Current ≤ 80 mA
- Load Capacitance ≤ 1.0 mF
- Ambient Temperature: -15° to 160°F (-26° to 71°C)
Heavy Duty Series Shock Absorber
HD/HDA Series

Ordering Information

Typical mounting methods are shown below. Special mounting requirements can be accommodated upon request.

TM: Rear Flange Front Foot Mount

TF: Front and Rear Flanges

CJ/CM: Clevis Mount

FM: Front and Rear Foot Mount

Also shown is optional safety cable, typically used in overhead applications.

FF: Front Flange

FR: Rear Flange

Note: Rear flange mounting not recommended for stroke lengths above 12 inches.

Shock Absorbers

Note: HD models are custom-ordnosed, therefore all information must be provided to Enidine for unique part number assignment.

Example:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>HD 3.0 x 5</th>
<th>TM</th>
<th>C</th>
<th>APPLICATION DATA</th>
</tr>
</thead>
</table>
| 4 | Select HD (Non-Adjustable) or HDA (Adjustable) Catalog No. from Engineering Data Chart | Select mounting method | Options | Required for HD models:
| | | • TM (Rear flange front foot mount) | • C (Sensor cable) | • Vertical or horizontal motion
| | | • FM (Front and rear foot mount) | • P (Sensor plug) | • Weight
| | | • TF (Front and rear flanges) | • SC (Safety cable) | • Impact velocity
| | | • FF (Front flange) | | • Propelling force (if any)
| | | • FR (Rear flange) | | • Cycles/Hr
| | | • CJ (Imperial clevis mount) | | • Other (temperature or other environmental conditions, safety standards, etc.)
| | | • CM (Metric clevis mount) | |
Heavy Duty Series Shock Absorber

HD/HDA Series

Technical Data

<table>
<thead>
<tr>
<th>Catalog No./ Model</th>
<th>(3) Stroke in. (mm)</th>
<th>(3) Max. in.-lbs./cycle (Nm/cycle)</th>
<th>(5) Max. in.-lbs./hr. (Nm/hr)</th>
<th>Nominal Return Force lbs. (N)</th>
<th>SA in. (mm)</th>
<th>SB in. (mm)</th>
<th>Flange Dimensions</th>
<th>H</th>
<th>HD</th>
<th>HD/FL Series</th>
<th>Model No. Weight lbs. (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 1.5 x 2</td>
<td>2</td>
<td>27,000</td>
<td>1,590,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>22</td>
<td>(50)</td>
<td>(300)</td>
</tr>
<tr>
<td></td>
<td>(130)</td>
<td>(3,000)</td>
<td>(3,000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 4</td>
<td>4</td>
<td>53,000</td>
<td>3,160,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>24</td>
<td>(100)</td>
<td>(5 950)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(6,000)</td>
<td>(3,160 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 6</td>
<td>6</td>
<td>79,000</td>
<td>6,470,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>26</td>
<td>(8 930)</td>
<td>(10 000)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(100 000)</td>
<td>(6,470 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 8</td>
<td>8</td>
<td>106,000</td>
<td>9,550,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>28</td>
<td>(150)</td>
<td>(11 900)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(150 000)</td>
<td>(9,550 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 10</td>
<td>10</td>
<td>132,000</td>
<td>13,500,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>31</td>
<td>(18 800)</td>
<td>(18 800)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(132 000)</td>
<td>(13,500 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 12</td>
<td>12</td>
<td>158,000</td>
<td>17,250,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>33</td>
<td>(20 800)</td>
<td>(20 800)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(158 000)</td>
<td>(17,250 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 14</td>
<td>14</td>
<td>184,000</td>
<td>21,850,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>37</td>
<td>(25 800)</td>
<td>(25 800)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(184 000)</td>
<td>(21,850 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 16</td>
<td>16</td>
<td>210,000</td>
<td>26,000,000</td>
<td>15,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>40</td>
<td>(30 800)</td>
<td>(30 800)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(210 000)</td>
<td>(26,000 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 18</td>
<td>18</td>
<td>236,000</td>
<td>31,000,000</td>
<td>10,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>44</td>
<td>(35 800)</td>
<td>(35 800)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(236 000)</td>
<td>(31,000 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 20</td>
<td>20</td>
<td>262,000</td>
<td>36,450,000</td>
<td>8,750</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>47</td>
<td>(40 800)</td>
<td>(40 800)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(262 000)</td>
<td>(36,450 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 1.5 x 24</td>
<td>24</td>
<td>288,000</td>
<td>41,550,000</td>
<td>6,250</td>
<td>63</td>
<td>6.7</td>
<td>3.5</td>
<td>1/2</td>
<td>50</td>
<td>(45 200)</td>
<td>(45 200)</td>
</tr>
<tr>
<td></td>
<td>(150)</td>
<td>(288 000)</td>
<td>(41,550 000)</td>
<td>(180 000)</td>
<td>(70 000)</td>
<td>(280)</td>
<td>(120)</td>
<td>(M12)</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For TF, FF and FR mounting, delete front foot and dimensions.

HD/HD-Catalog: HI-HD-Catalog 3/20/09 1:30 PM Page 13
Heavy Duty Series Shock Absorber

HD/HDA Series

Technical Data

HD 1.5 x 2 → HD 1.5 x 24 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 1.5 x 2</td>
<td>12.2</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>8.2</td>
<td>0.8</td>
<td>9.4</td>
<td>3.4</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 4</td>
<td>16.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>10.2</td>
<td>0.8</td>
<td>11.4</td>
<td>5.3</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 6</td>
<td>20.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>12.2</td>
<td>0.8</td>
<td>13.4</td>
<td>7.3</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 8</td>
<td>24.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>14.2</td>
<td>0.8</td>
<td>15.4</td>
<td>9.3</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 10</td>
<td>28.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>16.2</td>
<td>0.8</td>
<td>17.4</td>
<td>11.4</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 12</td>
<td>32.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>18.2</td>
<td>0.8</td>
<td>19.4</td>
<td>13.4</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 14</td>
<td>36.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>20.2</td>
<td>0.8</td>
<td>21.4</td>
<td>15.4</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 16</td>
<td>40.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>22.2</td>
<td>0.8</td>
<td>23.4</td>
<td>17.4</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 18</td>
<td>44.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>24.2</td>
<td>0.8</td>
<td>25.4</td>
<td>19.3</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 20</td>
<td>48.1</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>26.2</td>
<td>0.8</td>
<td>27.4</td>
<td>21.4</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
<tr>
<td>HD 1.5 x 24</td>
<td>56.2</td>
<td>3.5</td>
<td>1.1</td>
<td>2.0</td>
<td>30.2</td>
<td>0.8</td>
<td>31.4</td>
<td>25.4</td>
<td>6.5</td>
<td>5.5</td>
<td>5.5</td>
<td>4.9</td>
<td>1.3</td>
<td>2.3</td>
<td>6.3</td>
<td>5.7</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Notes:
1. HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle.
2. It is recommended that the customer consult Enidine for safety-related overhead crane applications.
3. The energy data listed is for ideal linear impacts only. If side load conditions exist in the application, contact Enidine for sizing assistance.
4. Rear flange mounting of 12 inch strokes and longer not recommended. Front and rear flange or foot mount configurations are recommended.
5. Maximum cycle rate is 60 cycles/hr.
6. For impact velocities over 180 in./sec (4.5 m/s), consult factory.
Heavy Duty Series Shock Absorber

HD/ HDA Series

HD 2.0 x 10 → HD 2.0 x 56 Series

Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Stroke</th>
<th>Max. Return Force (N)</th>
<th>Max. Shock Force (N)</th>
<th>Max. in.-lbs./cycle</th>
<th>Max. in.-lbs./hour</th>
<th>Bolt Size (mm)</th>
<th>Weight (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 2.0 x 10</td>
<td>10</td>
<td>9,403,000</td>
<td>25,000</td>
<td>962,039</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 12</td>
<td>12</td>
<td>18,490,000</td>
<td>25,000</td>
<td>1,859,355</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 14</td>
<td>14</td>
<td>39,000,000</td>
<td>25,000</td>
<td>5,077,400</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 16</td>
<td>16</td>
<td>12,655,000</td>
<td>25,000</td>
<td>1,320,700</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 18</td>
<td>18</td>
<td>13,702,000</td>
<td>25,000</td>
<td>1,320,700</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 20</td>
<td>20</td>
<td>14,818,000</td>
<td>25,000</td>
<td>1,472,340</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 24</td>
<td>24</td>
<td>19,973,000</td>
<td>25,000</td>
<td>3,063,600</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 28</td>
<td>28</td>
<td>19,148,000</td>
<td>25,000</td>
<td>2,845,514</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 32</td>
<td>32</td>
<td>20,800,000</td>
<td>25,000</td>
<td>3,599,581</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 36</td>
<td>36</td>
<td>23,055,000</td>
<td>25,000</td>
<td>4,025,013</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 40</td>
<td>40</td>
<td>27,270,000</td>
<td>19,000</td>
<td>4,471,128</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 44</td>
<td>44</td>
<td>31,534,000</td>
<td>19,000</td>
<td>5,416,514</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 48</td>
<td>48</td>
<td>35,665,000</td>
<td>19,000</td>
<td>5,567,929</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>HD 2.0 x 56</td>
<td>56</td>
<td>32,000,000</td>
<td>19,000</td>
<td>5,035,580</td>
<td>25,000</td>
<td>100</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Legend:
- **HD:** Heavy Duty Series
- **HI-HD:** Series
- **Catalog:** HD-HI-Catalog
- **Date:** 3/20/09
- **Page:** 15

Note: For TF, FF and FR mounting, delete front foot and dimensions.
Heavy Duty Series Shock Absorber
HD/HDA Series

Technical Data

HD 2.0 x 10 → HD 2.0 x 56 Series

<table>
<thead>
<tr>
<th>Catalog No. / Model</th>
<th>A (in.)</th>
<th>B (in.)</th>
<th>D (in.)</th>
<th>E (in.)</th>
<th>F (in.)</th>
<th>H (in.)</th>
<th>Y (in.)</th>
<th>Z (in.)</th>
<th>FA (in.)</th>
<th>FB (in.)</th>
<th>FC (in.)</th>
<th>FD (in.)</th>
<th>FE (in.)</th>
<th>FG (in.)</th>
<th>FJ (in.)</th>
<th>CA (mm)</th>
<th>CB (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 2.0 x 10</td>
<td>29.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>17.4</td>
<td>1.0</td>
<td>19.0</td>
<td>11.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 12</td>
<td>33.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>19.4</td>
<td>1.0</td>
<td>21.0</td>
<td>13.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 14</td>
<td>37.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>21.4</td>
<td>1.0</td>
<td>23.0</td>
<td>15.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 16</td>
<td>41.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>23.4</td>
<td>1.0</td>
<td>25.0</td>
<td>17.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 18</td>
<td>45.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>25.4</td>
<td>1.0</td>
<td>27.0</td>
<td>19.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 20</td>
<td>49.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>27.4</td>
<td>1.0</td>
<td>29.0</td>
<td>21.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 24</td>
<td>53.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>29.4</td>
<td>1.0</td>
<td>31.0</td>
<td>23.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 28</td>
<td>57.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>31.4</td>
<td>1.0</td>
<td>33.0</td>
<td>25.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 32</td>
<td>61.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>33.4</td>
<td>1.0</td>
<td>35.0</td>
<td>27.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 36</td>
<td>65.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>35.4</td>
<td>1.0</td>
<td>37.0</td>
<td>29.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 40</td>
<td>69.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>37.4</td>
<td>1.0</td>
<td>39.0</td>
<td>31.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 44</td>
<td>73.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>39.4</td>
<td>1.0</td>
<td>41.0</td>
<td>33.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 48</td>
<td>77.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>41.4</td>
<td>1.0</td>
<td>43.0</td>
<td>35.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>HD 2.0 x 56</td>
<td>81.8</td>
<td>4.3</td>
<td>1.6</td>
<td>2.4</td>
<td>43.4</td>
<td>1.0</td>
<td>45.0</td>
<td>37.6</td>
<td>8.7</td>
<td>7.0</td>
<td>0.67</td>
<td>5.8</td>
<td>1.6</td>
<td>3.0</td>
<td>0.80</td>
<td>7.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Note 1: HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle.
Note 2: For free fall shock, a smaller model should be specified.
Note 3: For energized drop shock, use the drop shock impulse. If side load conditions exist in the application, contact Enidine for sizing assistance.
Note 4: Rear flange mounting of 12 inch strokes and longer not recommended. Front and rear flange or foot mount configurations are recommended.
Note 5: Maximum cycle rate is 60 cycles/hr.
Note 6: For impact velocities over 180 in./sec. (4.5 m/s), consult factory.
Heavy Duty Series Shock Absorber

HD/HDA Series

Technical Data

<table>
<thead>
<tr>
<th>Catalog No./ Model</th>
<th>(S) Stroke in.</th>
<th>HD (Max.) in.-lbs./cycle (Nm/cycle)</th>
<th>(E) Max. in.-lbs./hour (Nm/hr)</th>
<th>(T) Max. in.-lbs./cycle (Nm/cycle)</th>
<th>(ET) Max. in.-lbs./hour (Nm/hr)</th>
<th>(ETC) Max. in.-lbs./hour (Nm/hr)</th>
<th>(E T) Max. in.-lbs./hour (Nm/hr)</th>
<th>(ETC) Max. in.-lbs./hour (Nm/hr)</th>
<th>Max. Return Force lbs (N)</th>
<th>Max. Force lbs (N)</th>
<th>Max. Weight lbs (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 3.0 x 2</td>
<td>2</td>
<td>560,000</td>
<td>144,000</td>
<td>4,600,000</td>
<td>880,000</td>
<td>1,064,000</td>
<td>1,288,000</td>
<td>1,064,000</td>
<td>125</td>
<td>155</td>
<td>175</td>
</tr>
<tr>
<td>HD(A) 3.0 x 3</td>
<td>3</td>
<td>3,000,000</td>
<td>408,000</td>
<td>1,224,000</td>
<td>1,632,000</td>
<td>2,000,000</td>
<td>2,500,000</td>
<td>2,000,000</td>
<td>125</td>
<td>155</td>
<td>270</td>
</tr>
<tr>
<td>HD(A) 3.0 x 5</td>
<td>5</td>
<td>7,000,000</td>
<td>1,000,000</td>
<td>3,000,000</td>
<td>4,000,000</td>
<td>5,000,000</td>
<td>6,000,000</td>
<td>5,000,000</td>
<td>125</td>
<td>155</td>
<td>378</td>
</tr>
<tr>
<td>HD(A) 3.0 x 8</td>
<td>8</td>
<td>11,000,000</td>
<td>1,400,000</td>
<td>4,200,000</td>
<td>5,600,000</td>
<td>7,000,000</td>
<td>8,400,000</td>
<td>7,000,000</td>
<td>125</td>
<td>155</td>
<td>481</td>
</tr>
<tr>
<td>HD 3.0 x 10</td>
<td>10</td>
<td>15,000,000</td>
<td>1,800,000</td>
<td>5,400,000</td>
<td>7,200,000</td>
<td>9,000,000</td>
<td>10,800,000</td>
<td>9,000,000</td>
<td>125</td>
<td>155</td>
<td>595</td>
</tr>
<tr>
<td>HD(A) 3.0 x 12</td>
<td>12</td>
<td>19,000,000</td>
<td>2,200,000</td>
<td>6,600,000</td>
<td>9,000,000</td>
<td>11,400,000</td>
<td>13,800,000</td>
<td>11,400,000</td>
<td>125</td>
<td>155</td>
<td>699</td>
</tr>
<tr>
<td>HD 3.0 x 14</td>
<td>14</td>
<td>23,000,000</td>
<td>2,600,000</td>
<td>8,400,000</td>
<td>11,200,000</td>
<td>14,200,000</td>
<td>17,400,000</td>
<td>14,200,000</td>
<td>125</td>
<td>155</td>
<td>803</td>
</tr>
<tr>
<td>HD 3.0 x 16</td>
<td>16</td>
<td>27,000,000</td>
<td>3,000,000</td>
<td>10,200,000</td>
<td>13,200,000</td>
<td>16,800,000</td>
<td>20,160,000</td>
<td>16,800,000</td>
<td>125</td>
<td>155</td>
<td>907</td>
</tr>
<tr>
<td>HD 3.0 x 18</td>
<td>18</td>
<td>31,000,000</td>
<td>3,400,000</td>
<td>12,000,000</td>
<td>15,600,000</td>
<td>20,000,000</td>
<td>24,400,000</td>
<td>20,000,000</td>
<td>125</td>
<td>155</td>
<td>1012</td>
</tr>
<tr>
<td>HD 3.0 x 20</td>
<td>20</td>
<td>35,000,000</td>
<td>3,800,000</td>
<td>13,800,000</td>
<td>17,760,000</td>
<td>23,040,000</td>
<td>28,800,000</td>
<td>23,040,000</td>
<td>125</td>
<td>155</td>
<td>1117</td>
</tr>
<tr>
<td>HD 3.0 x 24</td>
<td>24</td>
<td>41,000,000</td>
<td>4,200,000</td>
<td>16,200,000</td>
<td>20,940,000</td>
<td>27,260,000</td>
<td>33,912,000</td>
<td>27,260,000</td>
<td>125</td>
<td>155</td>
<td>1222</td>
</tr>
<tr>
<td>HD 3.0 x 28</td>
<td>28</td>
<td>47,000,000</td>
<td>4,600,000</td>
<td>18,600,000</td>
<td>23,880,000</td>
<td>30,640,000</td>
<td>38,368,000</td>
<td>30,640,000</td>
<td>125</td>
<td>155</td>
<td>1338</td>
</tr>
<tr>
<td>HD 3.0 x 32</td>
<td>32</td>
<td>54,000,000</td>
<td>5,000,000</td>
<td>21,000,000</td>
<td>27,000,000</td>
<td>34,500,000</td>
<td>43,500,000</td>
<td>34,500,000</td>
<td>125</td>
<td>155</td>
<td>1454</td>
</tr>
<tr>
<td>HD 3.0 x 36</td>
<td>36</td>
<td>61,000,000</td>
<td>5,400,000</td>
<td>23,400,000</td>
<td>30,540,000</td>
<td>39,810,000</td>
<td>49,740,000</td>
<td>39,810,000</td>
<td>125</td>
<td>155</td>
<td>1571</td>
</tr>
<tr>
<td>HD 3.0 x 40</td>
<td>40</td>
<td>69,000,000</td>
<td>5,800,000</td>
<td>25,800,000</td>
<td>34,080,000</td>
<td>43,560,000</td>
<td>54,672,000</td>
<td>43,560,000</td>
<td>125</td>
<td>155</td>
<td>1688</td>
</tr>
<tr>
<td>HD 3.0 x 48</td>
<td>48</td>
<td>79,000,000</td>
<td>6,200,000</td>
<td>28,200,000</td>
<td>38,520,000</td>
<td>48,960,000</td>
<td>61,152,000</td>
<td>48,960,000</td>
<td>125</td>
<td>155</td>
<td>1804</td>
</tr>
<tr>
<td>HD 3.0 x 56</td>
<td>56</td>
<td>89,000,000</td>
<td>6,600,000</td>
<td>30,600,000</td>
<td>43,080,000</td>
<td>52,640,000</td>
<td>66,768,000</td>
<td>52,640,000</td>
<td>125</td>
<td>155</td>
<td>1920</td>
</tr>
</tbody>
</table>

Note: For TF, FF and FR mounting, delete front foot and dimensions.
Note: For TF, FF and FR mounting, delete front foot and dimensions.

<table>
<thead>
<tr>
<th>Catalog No./Model</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>F (mm)</th>
<th>G (mm)</th>
<th>H (mm)</th>
<th>I (mm)</th>
<th>J (mm)</th>
<th>K (mm)</th>
<th>L (mm)</th>
<th>M (mm)</th>
<th>N (mm)</th>
<th>O (mm)</th>
<th>P (mm)</th>
<th>Q (mm)</th>
<th>R (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 3.0 x 2</td>
<td>13.2</td>
<td>5.1</td>
<td>1.8</td>
<td>2.8</td>
<td>8.0</td>
<td>8.4</td>
<td>1.0</td>
<td>10.0</td>
<td>10.4</td>
<td>4.2</td>
<td>3.8</td>
<td>10.0</td>
<td>8.5</td>
<td>8.8</td>
<td>2.0</td>
<td>3.5</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>HD(A) 3.0 x 3</td>
<td>15.2</td>
<td>5.1</td>
<td>1.8</td>
<td>2.8</td>
<td>9.0</td>
<td>9.4</td>
<td>1.0</td>
<td>11.0</td>
<td>11.4</td>
<td>5.2</td>
<td>4.0</td>
<td>10.0</td>
<td>8.5</td>
<td>8.8</td>
<td>2.0</td>
<td>3.5</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>HD(A) 3.0 x 5</td>
<td>19.2</td>
<td>5.1</td>
<td>1.8</td>
<td>2.8</td>
<td>11.0</td>
<td>11.4</td>
<td>1.0</td>
<td>13.0</td>
<td>13.4</td>
<td>7.2</td>
<td>6.0</td>
<td>10.0</td>
<td>8.5</td>
<td>8.8</td>
<td>2.0</td>
<td>3.5</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>HD(A) 3.0 x 8</td>
<td>25.2</td>
<td>5.1</td>
<td>1.8</td>
<td>2.8</td>
<td>14.0</td>
<td>14.4</td>
<td>1.0</td>
<td>16.0</td>
<td>16.4</td>
<td>9.8</td>
<td>8.0</td>
<td>10.0</td>
<td>8.5</td>
<td>8.8</td>
<td>2.0</td>
<td>3.5</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>HD 3.0 x 10</td>
<td>29.2</td>
<td>5.1</td>
<td>1.8</td>
<td>2.8</td>
<td>16.0</td>
<td>16.4</td>
<td>1.0</td>
<td>18.0</td>
<td>18.4</td>
<td>12.0</td>
<td>9.0</td>
<td>10.0</td>
<td>8.5</td>
<td>8.8</td>
<td>2.0</td>
<td>3.5</td>
<td>1.0</td>
<td>5.3</td>
</tr>
<tr>
<td>HD 3.0 x 12</td>
<td>33.2</td>
<td>5.1</td>
<td>1.8</td>
<td>2.8</td>
<td>18.0</td>
<td>18.4</td>
<td>1.0</td>
<td>20.0</td>
<td>20.4</td>
<td>14.0</td>
<td>10.0</td>
<td>10.0</td>
<td>8.5</td>
<td>8.8</td>
<td>2.0</td>
<td>3.5</td>
<td>1.0</td>
<td>5.3</td>
</tr>
</tbody>
</table>

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-852-8508 Fax: 1-716-662-0406

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Heavy Duty Series

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.

Foot Mount Dimensions

Charge Port Dimensions

Technical Data

HD 3.0 x 2 ➜ HD 3.0 x 56 Series

Note: For TF, FF and FR mounting, delete front foot and dimensions.
Heavy Duty Series Shock Absorber

HD/HDA Series

Heavy Duty Series Shock Absorber

HD 3.5 x 2 → HD 3.5 x 48 Series

Technical Data

<table>
<thead>
<tr>
<th>HD 3.5 x 2</th>
<th>HD 3.5 x 4</th>
<th>HD 3.5 x 6</th>
<th>HD 3.5 x 8</th>
<th>HD 3.5 x 10</th>
<th>HD 3.5 x 12</th>
<th>HD 3.5 x 16</th>
<th>HD 3.5 x 20</th>
<th>HD 3.5 x 24</th>
<th>HD 3.5 x 28</th>
<th>HD 3.5 x 32</th>
<th>HD 3.5 x 36</th>
<th>HD 3.5 x 40</th>
<th>HD 3.5 x 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>SA</td>
<td>SB</td>
<td>Max. Force</td>
<td>SA</td>
<td>SB</td>
<td>Max. Force</td>
<td>SA</td>
<td>SB</td>
<td>Max. Force</td>
<td>SA</td>
<td>SB</td>
<td>Max. Force</td>
<td>SA</td>
</tr>
<tr>
<td>HD 3.5 x 2</td>
<td>2</td>
<td>2</td>
<td>112,500</td>
<td>7,345,500</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 4</td>
<td>4</td>
<td>4</td>
<td>225,500</td>
<td>8,850,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 6</td>
<td>6</td>
<td>6</td>
<td>338,500</td>
<td>10,620,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 8</td>
<td>8</td>
<td>8</td>
<td>451,500</td>
<td>12,775,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 10</td>
<td>10</td>
<td>10</td>
<td>564,000</td>
<td>16,177,500</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 12</td>
<td>12</td>
<td>12</td>
<td>677,000</td>
<td>19,045,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 16</td>
<td>16</td>
<td>16</td>
<td>790,000</td>
<td>21,142,500</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 20</td>
<td>20</td>
<td>20</td>
<td>893,000</td>
<td>25,810,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 24</td>
<td>24</td>
<td>24</td>
<td>996,000</td>
<td>30,585,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 28</td>
<td>28</td>
<td>28</td>
<td>1,099,000</td>
<td>35,360,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 32</td>
<td>32</td>
<td>32</td>
<td>1,202,000</td>
<td>40,235,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 36</td>
<td>36</td>
<td>36</td>
<td>1,305,000</td>
<td>45,110,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1541</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 40</td>
<td>40</td>
<td>40</td>
<td>1,408,000</td>
<td>50,085,000</td>
<td>67,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 48</td>
<td>48</td>
<td>48</td>
<td>1,511,000</td>
<td>55,060,000</td>
<td>58,500</td>
<td>195</td>
<td>7.9</td>
<td>6.3</td>
<td>%</td>
<td>1639</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For TF, FF and FR mounting, delete front foot and dimensions.
Heavy Duty Series Shock Absorber

HD/HDA Series

Technical Data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 3.5 x 2</td>
<td>1.59</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>9.6</td>
<td>1.0</td>
<td>11.8</td>
<td>3.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>5.5</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 4</td>
<td>1.80</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>11.6</td>
<td>1.0</td>
<td>13.6</td>
<td>5.4</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>5.5</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 6</td>
<td>2.09</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>13.6</td>
<td>1.0</td>
<td>15.6</td>
<td>7.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>5.5</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 8</td>
<td>2.59</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>15.6</td>
<td>1.0</td>
<td>17.6</td>
<td>9.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>5.5</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 10</td>
<td>2.99</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>17.6</td>
<td>1.0</td>
<td>19.6</td>
<td>11.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>5.5</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 12</td>
<td>3.39</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>19.6</td>
<td>1.0</td>
<td>21.6</td>
<td>13.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>5.5</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 16</td>
<td>4.19</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>23.6</td>
<td>1.0</td>
<td>25.6</td>
<td>15.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>5.5</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 20</td>
<td>5.20</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>29.8</td>
<td>1.0</td>
<td>31.8</td>
<td>21.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>7.6</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 24</td>
<td>6.01</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>33.8</td>
<td>1.0</td>
<td>35.8</td>
<td>25.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>7.6</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 32</td>
<td>7.61</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>41.8</td>
<td>1.0</td>
<td>43.8</td>
<td>33.2</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>7.6</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 36</td>
<td>9.61</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>49.8</td>
<td>1.0</td>
<td>51.8</td>
<td>41.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>7.6</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 40</td>
<td>11.7</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>57.8</td>
<td>1.0</td>
<td>59.8</td>
<td>49.2</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>7.6</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>HD 3.5 x 48</td>
<td>13.6</td>
<td>6.1</td>
<td>2.2</td>
<td>3.2</td>
<td>65.8</td>
<td>1.0</td>
<td>67.8</td>
<td>57.3</td>
<td>11.8</td>
<td>9.8</td>
<td>1.06</td>
<td>8.3</td>
<td>2.0</td>
<td>4.3</td>
<td>1.0</td>
<td>7.6</td>
<td>3.4</td>
<td>90°</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle.
2. It is recommended that the customer consult Enidine for safety-related overhead crane applications.
3. The energy data listed is for ideal linear impacts only. If side load conditions exist in the application, contact Enidine for sizing assistance.
4. Rear flange mounting of 12 inch strokes and longer not recommended. Front and rear flange or foot mount configurations are recommended.
5. Maximum cycle rate is 60 cycles/hr.
6. For impact velocities over 180 in./sec. (4.5 m/s), consult factory.
7. For TF, FF and FR mounting, delete front foot and dimensions.
Technical Data

Heavy Duty Series Shock Absorber

HD/HDA Series

- **HD(A) 4.0 x 2 → HD 4.0 x 48 Series**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 4.0 x 2</td>
<td>(50)</td>
<td>2</td>
<td>130,000</td>
<td>8,018,000</td>
<td>120,000</td>
<td>7,200,000</td>
<td>80,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD(A) 4.0 x 4</td>
<td>(100)</td>
<td>4</td>
<td>268,000</td>
<td>13,302,000</td>
<td>240,000</td>
<td>13,700,000</td>
<td>80,000</td>
<td>240</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD(A) 4.0 x 6</td>
<td>(150)</td>
<td>6</td>
<td>403,000</td>
<td>19,134,000</td>
<td>360,000</td>
<td>19,600,000</td>
<td>80,000</td>
<td>240</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD(A) 4.0 x 8</td>
<td>(200)</td>
<td>8</td>
<td>535,000</td>
<td>26,384,000</td>
<td>480,000</td>
<td>27,000,000</td>
<td>80,000</td>
<td>240</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD(A) 4.0 x 10</td>
<td>(250)</td>
<td>10</td>
<td>668,000</td>
<td>34,731,000</td>
<td>630,000</td>
<td>35,400,000</td>
<td>80,000</td>
<td>240</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 12</td>
<td>(300)</td>
<td>12</td>
<td>800,000</td>
<td>44,341,000</td>
<td>–</td>
<td>–</td>
<td>80,000</td>
<td>240</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 16</td>
<td>(400)</td>
<td>16</td>
<td>1,106,000</td>
<td>68,448,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 20</td>
<td>(500)</td>
<td>20</td>
<td>1,500,000</td>
<td>102,555,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 24</td>
<td>(600)</td>
<td>24</td>
<td>1,900,000</td>
<td>156,662,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 28</td>
<td>(700)</td>
<td>28</td>
<td>2,300,000</td>
<td>210,769,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 32</td>
<td>(800)</td>
<td>32</td>
<td>2,700,000</td>
<td>264,876,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 36</td>
<td>(900)</td>
<td>36</td>
<td>3,100,000</td>
<td>318,983,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 40</td>
<td>(1,000)</td>
<td>40</td>
<td>3,500,000</td>
<td>372,090,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>HD 4.0 x 48</td>
<td>(1,200)</td>
<td>48</td>
<td>3,900,000</td>
<td>425,197,000</td>
<td>–</td>
<td>–</td>
<td>65,000</td>
<td>245</td>
<td>9.8</td>
<td>7.8</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: For TF, FF, and FR mounting, delete front foot and dimensions.
Heavy Duty Series Shock Absorber

HD/HDA Series

Technical Data

HD

<table>
<thead>
<tr>
<th>Catalog No./ Model</th>
<th>A (in.)</th>
<th>B (in.)</th>
<th>D (in.)</th>
<th>E (in.)</th>
<th>F (in.)</th>
<th>G (in.)</th>
<th>H (in.)</th>
<th>I (in.)</th>
<th>J (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 4.0 x 2</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 4</td>
<td>4.0</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4.0</td>
<td>4.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 6</td>
<td>4.0</td>
<td>6.0</td>
<td>1.0</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 8</td>
<td>4.0</td>
<td>8.0</td>
<td>1.0</td>
<td>1.0</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 10</td>
<td>4.0</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>10.0</td>
<td>10.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 12</td>
<td>4.0</td>
<td>12.0</td>
<td>1.0</td>
<td>1.0</td>
<td>12.0</td>
<td>12.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 16</td>
<td>4.0</td>
<td>16.0</td>
<td>1.0</td>
<td>1.0</td>
<td>16.0</td>
<td>16.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 20</td>
<td>4.0</td>
<td>20.0</td>
<td>1.0</td>
<td>1.0</td>
<td>20.0</td>
<td>20.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 24</td>
<td>4.0</td>
<td>24.0</td>
<td>1.0</td>
<td>1.0</td>
<td>24.0</td>
<td>24.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 30</td>
<td>4.0</td>
<td>30.0</td>
<td>1.0</td>
<td>1.0</td>
<td>30.0</td>
<td>30.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 32</td>
<td>4.0</td>
<td>32.0</td>
<td>1.0</td>
<td>1.0</td>
<td>32.0</td>
<td>32.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 36</td>
<td>4.0</td>
<td>36.0</td>
<td>1.0</td>
<td>1.0</td>
<td>36.0</td>
<td>36.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 40</td>
<td>4.0</td>
<td>40.0</td>
<td>1.0</td>
<td>1.0</td>
<td>40.0</td>
<td>40.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HD(A) 4.0 x 48</td>
<td>4.0</td>
<td>48.0</td>
<td>1.0</td>
<td>1.0</td>
<td>48.0</td>
<td>48.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Footprint Dimensions

- **HD**
- **HDA**

Charge Port

1. HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle. HDA models will function satisfactorily at 10% of their maximum rated energy per cycle. If less than these values, a smaller model should be specified.

2. It is recommended that the customer consult Enidine for safety-related overhead crane applications.

3. The energy data listed is for ideal linear impacts only. If side load conditions exist in the application, contact Enidine for sizing assistance.

4. Rear flange mounting of 12 inch strokes and longer not recommended. Front and rear flange or foot mount configurations are recommended.

5. HDA models which have an impact velocity below 30 in./sec., please contact Enidine for sizing assistance.

6. Maximum cycle rate is 60 cycles/hr.

7. For impact velocities over 180 in./sec. (4.5 m/s), consult factory.

Notes:

- HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle. HDA models will function satisfactorily at 10% of their maximum rated energy per cycle. If less than these values, a smaller model should be specified.

- It is recommended that the customer consult Enidine for safety-related overhead crane applications.

- The energy data listed is for ideal linear impacts only. If side load conditions exist in the application, contact Enidine for sizing assistance.

- Rear flange mounting of 12 inch strokes and longer not recommended. Front and rear flange or foot mount configurations are recommended.

- HDA models which have an impact velocity below 30 in./sec., please contact Enidine for sizing assistance.

- Maximum cycle rate is 60 cycles/hr.

- For impact velocities over 180 in./sec. (4.5 m/s), consult factory.

ENDINE

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-852-8508 Fax: 1-716-662-0406
HD(A) 5.0 x 4 ➞ HD 5.0 x 4B Series

Technical Data

<table>
<thead>
<tr>
<th>Catalog No./ Stroke</th>
<th>(F) Max. Shock Force (N)</th>
<th>(S) Max. In.‑lbs./cycle (Nm/cycle)</th>
<th>(C) Max. In.‑lbs./hour (Nm/hr)</th>
<th>(ET) Max. In.‑lbs./cycle (Nm/cycle)</th>
<th>(ETC) Max. In.‑lbs./hour (Nm/hr)</th>
<th>Nominal Return Force (N)</th>
<th>Flange Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 5.0 x 4</td>
<td>4</td>
<td>414,000</td>
<td>15,600,000</td>
<td>327,000</td>
<td>18,000,000</td>
<td>126,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(100)</td>
<td>(46 700)</td>
<td>(1 762 621)</td>
<td>(37 000)</td>
<td>(1 809 624)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD(A) 5.0 x 6</td>
<td>6</td>
<td>620,000</td>
<td>17,720,000</td>
<td>500,000</td>
<td>18,000,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(136)</td>
<td>(70 000)</td>
<td>(2 303 337)</td>
<td>(136 000)</td>
<td>(2 349 340)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD(A) 5.0 x 8</td>
<td>8</td>
<td>826,000</td>
<td>19,841,000</td>
<td>640,000</td>
<td>20,250,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(200)</td>
<td>(93 000)</td>
<td>(2 523 036)</td>
<td>(274 000)</td>
<td>(2 589 037)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD(A) 5.0 x 10</td>
<td>10</td>
<td>1,036,000</td>
<td>24,042,000</td>
<td>900,000</td>
<td>22,300,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(250)</td>
<td>(117 000)</td>
<td>(3 079 037)</td>
<td>(264 000)</td>
<td>(3 129 040)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD(A) 5.0 x 12</td>
<td>12</td>
<td>1,339,000</td>
<td>28,285,000</td>
<td>1,190,000</td>
<td>24,500,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(300)</td>
<td>(160 000)</td>
<td>(3 579 076)</td>
<td>(333 000)</td>
<td>(3 639 086)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD 5.0 x 16</td>
<td>16</td>
<td>1,655,000</td>
<td>32,585,000</td>
<td>1,560,000</td>
<td>22,300,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(400)</td>
<td>(197 000)</td>
<td>(5 319 219)</td>
<td>(422 000)</td>
<td>(5 379 230)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD 5.0 x 20</td>
<td>20</td>
<td>2,071,000</td>
<td>36,885,000</td>
<td>2,200,000</td>
<td>24,500,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(500)</td>
<td>(234 000)</td>
<td>(6 415 664)</td>
<td>(525 000)</td>
<td>(6 475 674)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD 5.0 x 24</td>
<td>24</td>
<td>2,475,000</td>
<td>41,030,000</td>
<td>2,700,000</td>
<td>26,700,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(600)</td>
<td>(280 000)</td>
<td>(7 215 171)</td>
<td>(620 000)</td>
<td>(7 275 181)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD 5.0 x 28</td>
<td>28</td>
<td>2,894,000</td>
<td>45,320,000</td>
<td>3,200,000</td>
<td>28,900,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(700)</td>
<td>(327 000)</td>
<td>(8 999 489)</td>
<td>(820 000)</td>
<td>(9 059 500)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD 5.0 x 32</td>
<td>32</td>
<td>3,313,000</td>
<td>49,579,000</td>
<td>3,600,000</td>
<td>31,100,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(800)</td>
<td>(374 000)</td>
<td>(10 579 282)</td>
<td>(1 000 000)</td>
<td>(10 639 300)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD 5.0 x 40</td>
<td>40</td>
<td>4,112,000</td>
<td>57,818,000</td>
<td>4,200,000</td>
<td>34,300,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(1 000)</td>
<td>(447 000)</td>
<td>(14 527 421)</td>
<td>(2 500 000)</td>
<td>(14 587 441)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
<tr>
<td>HD 5.0 x 48</td>
<td>48</td>
<td>4,795,000</td>
<td>66,262,000</td>
<td>4,900,000</td>
<td>37,900,000</td>
<td>124,000</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>(1 200)</td>
<td>(513 000)</td>
<td>(17 465 633)</td>
<td>(3 300 000)</td>
<td>(17 525 653)</td>
<td>(550 000)</td>
<td>(1 740)</td>
</tr>
</tbody>
</table>

Note: For TF, FF and FR mounting, delete front foot and dimensions.
Heavy Duty Series Shock Absorber

HD/HDA Series

Technical Data

1. HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle. HDA models will function satisfactorily at 10% of their maximum rated energy per cycle. If less than these values, a smaller model should be specified.

2. It is recommended that the customer consult Enidine for safety-related overhead crane applications.

3. The energy data listed is for ideal linear impacts only. If side load conditions exist in the application, contact Enidine for sizing assistance.

4. Rear flange mounting of 12 inch strokes and longer not recommended. Front and rear flange or foot mount configurations are recommended.

5. HDA models which have an impact velocity below 30 in./sec., please contact Enidine for sizing assistance.

6. Maximum cycle rate is 60 cycles/hr.

7. For impact velocities over 180 in./sec. (4.5 m/s), consult factory.

Foot Mount Dimensions

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 5.0 x 4</td>
<td>2.00</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>14.80</td>
<td>15.20</td>
<td>1.60</td>
<td>17.10</td>
<td>17.50</td>
<td>7.40</td>
<td>7.00</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 6</td>
<td>27.30</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>16.80</td>
<td>17.20</td>
<td>1.60</td>
<td>19.10</td>
<td>19.50</td>
<td>9.40</td>
<td>9.00</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 8</td>
<td>31.30</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>18.80</td>
<td>19.20</td>
<td>1.60</td>
<td>21.10</td>
<td>21.50</td>
<td>11.40</td>
<td>11.00</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 10</td>
<td>35.30</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>20.80</td>
<td>21.20</td>
<td>1.60</td>
<td>23.10</td>
<td>23.50</td>
<td>13.40</td>
<td>13.00</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 12</td>
<td>39.30</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>22.80</td>
<td>23.20</td>
<td>1.60</td>
<td>25.10</td>
<td>25.50</td>
<td>15.40</td>
<td>15.00</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 16</td>
<td>47.30</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>26.80 –</td>
<td>27.20 –</td>
<td>1.60</td>
<td>29.10 –</td>
<td>29.50 –</td>
<td>19.40 –</td>
<td>19.00 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 20</td>
<td>59.20</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>34.70 –</td>
<td>35.10 –</td>
<td>1.60</td>
<td>37.10 –</td>
<td>37.50 –</td>
<td>23.30 –</td>
<td>22.90 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 24</td>
<td>67.20</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>38.70 –</td>
<td>39.10 –</td>
<td>1.60</td>
<td>41.10 –</td>
<td>41.50 –</td>
<td>27.30 –</td>
<td>26.90 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 28</td>
<td>75.20</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>42.70 –</td>
<td>43.10 –</td>
<td>1.60</td>
<td>45.10 –</td>
<td>45.50 –</td>
<td>31.30 –</td>
<td>30.90 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 32</td>
<td>91.00</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>46.70 –</td>
<td>47.10 –</td>
<td>1.60</td>
<td>49.10 –</td>
<td>49.50 –</td>
<td>35.30 –</td>
<td>34.90 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 36</td>
<td>105.00</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>50.70 –</td>
<td>51.10 –</td>
<td>1.60</td>
<td>53.10 –</td>
<td>53.50 –</td>
<td>39.30 –</td>
<td>38.90 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 40</td>
<td>119.00</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>54.70 –</td>
<td>55.10 –</td>
<td>1.60</td>
<td>57.10 –</td>
<td>57.50 –</td>
<td>43.30 –</td>
<td>42.90 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
<tr>
<td>HD(A) 5.0 x 48</td>
<td>135.00</td>
<td>3.30</td>
<td>8.50</td>
<td>3.10</td>
<td>4.90</td>
<td>62.60 –</td>
<td>63.00 –</td>
<td>1.60</td>
<td>65.00 –</td>
<td>65.40 –</td>
<td>51.30 –</td>
<td>50.90 –</td>
<td>15.70</td>
<td>13.40</td>
<td>1.30</td>
<td>10.90</td>
<td>2.40</td>
<td>5.50</td>
</tr>
</tbody>
</table>

Note: 1. HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle.
2. HDA models will function satisfactorily at 10% of their maximum rated energy per cycle. If less than these values, a smaller model should be specified.
3. It is recommended that the customer consult Enidine for safety-related overhead crane applications.
4. Foot flare mounting of 12 inch strokes and longer not recommended. Front and rear flare or front mount configurations are recommended.
5. HDA models which have an impact velocity below 30 in./sec., please contact Enidine for sizing assistance.
6. Maximum cycle rate is 60 cycles/hr.
7. For impact velocities over 180 in./sec. (4.5 m/s), consult factory.

[Enidine website](www.enidine.com) | Email: industrialsales@enidine.com | Tel.: 1-800-852-8508 | Fax: 1-716-662-0406

HD HDA Heavy Duty Series

CHARGE PORT

FILL PORT
Heavy Duty Series

HD 6.0 x 4 → HD 6.0 x 48 Series

Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>SA (in)</th>
<th>SB (in)</th>
<th>Size (in)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 6.0 x 4</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>362</td>
</tr>
<tr>
<td>HD(A) 6.0 x 6</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>386</td>
</tr>
<tr>
<td>HD(A) 6.0 x 8</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>410</td>
</tr>
<tr>
<td>HD(A) 6.0 x 10</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>432</td>
</tr>
<tr>
<td>HD(A) 6.0 x 12</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>456</td>
</tr>
<tr>
<td>HD 6.0 x 16</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>503</td>
</tr>
<tr>
<td>HD 6.0 x 20</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>551</td>
</tr>
<tr>
<td>HD 6.0 x 24</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>551</td>
</tr>
<tr>
<td>HD 6.0 x 30</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>551</td>
</tr>
<tr>
<td>HD 6.0 x 36</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>551</td>
</tr>
<tr>
<td>HD 6.0 x 42</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>551</td>
</tr>
<tr>
<td>HD 6.0 x 48</td>
<td>1/2</td>
<td>1/2</td>
<td>1 1/2</td>
<td>551</td>
</tr>
</tbody>
</table>
Heavy Duty Series Shock Absorber

HD/HDA Series

Technical Data

<table>
<thead>
<tr>
<th>Catalog No./ Model</th>
<th>HD(A) 6.0 x 4</th>
<th>HD(A) 6.0 x 6</th>
<th>HD(A) 6.0 x 8</th>
<th>HD(A) 6.0 x 10</th>
<th>HD(A) 6.0 x 12</th>
<th>HD 6.0 x 16</th>
<th>HD 6.0 x 20</th>
<th>HD 6.0 x 24</th>
<th>HD 6.0 x 30</th>
<th>HD 6.0 x 36</th>
<th>HD 6.0 x 42</th>
<th>HD 6.0 x 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (in.)</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>B (in.)</td>
<td>8.0</td>
</tr>
<tr>
<td>C (in.)</td>
<td>6.3</td>
</tr>
<tr>
<td>D (in.)</td>
<td>11.4</td>
<td>11.4</td>
<td>11.6</td>
</tr>
<tr>
<td>F (in.)</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>H (in.)</td>
<td>8.3</td>
<td>8.3</td>
<td>10.3</td>
</tr>
<tr>
<td>T (in.)</td>
<td>7.7</td>
</tr>
<tr>
<td>Z (in.)</td>
<td>17.4</td>
</tr>
<tr>
<td>Y (in.)</td>
<td>18.2</td>
<td>20.2</td>
<td>22.2</td>
</tr>
<tr>
<td>Z (in.)</td>
<td>18.6</td>
<td>18.6</td>
<td>19.6</td>
</tr>
<tr>
<td>FA (in.)</td>
<td>8.3</td>
<td>10.3</td>
<td>12.3</td>
</tr>
<tr>
<td>FB (in.)</td>
<td>15.4</td>
<td>20.2</td>
<td>25.4</td>
</tr>
<tr>
<td>FD (in.)</td>
<td>15.8</td>
<td>20.6</td>
<td>25.6</td>
</tr>
<tr>
<td>FE (in.)</td>
<td>2.0</td>
</tr>
<tr>
<td>FG (in.)</td>
<td>18.2</td>
<td>20.2</td>
<td>25.4</td>
</tr>
<tr>
<td>FH (in.)</td>
<td>18.6</td>
<td>18.6</td>
<td>19.6</td>
</tr>
<tr>
<td>FJ (deg.)</td>
<td>30°</td>
</tr>
</tbody>
</table>

Notes:
1. HD shock absorbers will function satisfactorily at 5% of their maximum rated energy per cycle. If less than these values, a smaller model should be specified.
2. It is recommended that the customer consult Enidine for safety-related overhead crane applications.
3. The energy data listed is for ideal linear impacts only. If side load conditions exist in the application, contact Enidine for sizing assistance.
4. Rear flange mounting of 12 inch strokes and longer not recommended. Front and rear flange or foot mount configurations are recommended.
5. For impact velocities over 180 in./sec. (4.5 m/s), consult factory.
HD/HD(A) Series

<table>
<thead>
<tr>
<th>HD(A) 3.0 x 2</th>
<th>HD(A) 5.0 x 12 Series</th>
</tr>
</thead>
</table>

Clevis Mounts (CM)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HD(A) 3.0 x 2</td>
<td>17.0</td>
<td>5.1</td>
<td>1.5</td>
<td>3.5</td>
<td>8.2</td>
<td>8.6</td>
<td>2.4</td>
<td>1.5</td>
<td>1.0</td>
<td>1.2</td>
<td>2.6</td>
<td>2.7</td>
<td>1.3</td>
<td>1.0</td>
<td>3.9</td>
<td>2.0</td>
</tr>
<tr>
<td>HD(A) 3.0 x 3</td>
<td>19.0</td>
<td>5.1</td>
<td>1.5</td>
<td>3.5</td>
<td>9.2</td>
<td>9.6</td>
<td>2.4</td>
<td>1.5</td>
<td>1.0</td>
<td>1.2</td>
<td>1.6</td>
<td>2.7</td>
<td>1.3</td>
<td>1.0</td>
<td>3.9</td>
<td>2.0</td>
</tr>
<tr>
<td>HD(A) 3.0 x 5</td>
<td>23.0</td>
<td>5.1</td>
<td>1.5</td>
<td>3.5</td>
<td>11.2</td>
<td>11.6</td>
<td>2.4</td>
<td>1.5</td>
<td>1.0</td>
<td>1.2</td>
<td>1.6</td>
<td>2.7</td>
<td>1.3</td>
<td>1.0</td>
<td>3.9</td>
<td>2.0</td>
</tr>
<tr>
<td>HD(A) 3.0 x 8</td>
<td>29.6</td>
<td>5.1</td>
<td>1.5</td>
<td>3.5</td>
<td>14.4</td>
<td>14.6</td>
<td>2.4</td>
<td>1.5</td>
<td>1.0</td>
<td>1.2</td>
<td>1.6</td>
<td>2.7</td>
<td>1.3</td>
<td>1.0</td>
<td>3.9</td>
<td>2.0</td>
</tr>
<tr>
<td>HD(A) 3.0 x 10</td>
<td>33.0</td>
<td>5.1</td>
<td>1.5</td>
<td>3.5</td>
<td>16.2</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 3.0 x 12</td>
<td>37.0</td>
<td>5.1</td>
<td>1.5</td>
<td>3.5</td>
<td>16.8</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 4.0 x 2</td>
<td>22.4</td>
<td>7.9</td>
<td>2.6</td>
<td>5.5</td>
<td>12.0</td>
<td>12.4</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 4.0 x 4</td>
<td>26.4</td>
<td>7.9</td>
<td>2.6</td>
<td>5.5</td>
<td>14.0</td>
<td>14.4</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 4.0 x 6</td>
<td>30.4</td>
<td>7.9</td>
<td>2.6</td>
<td>5.5</td>
<td>16.0</td>
<td>16.4</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 4.0 x 8</td>
<td>34.4</td>
<td>7.9</td>
<td>2.6</td>
<td>5.5</td>
<td>18.0</td>
<td>18.4</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 4.0 x 10</td>
<td>38.4</td>
<td>7.9</td>
<td>2.6</td>
<td>5.5</td>
<td>20.0</td>
<td>20.4</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 4.0 x 12</td>
<td>42.4</td>
<td>7.9</td>
<td>2.6</td>
<td>5.5</td>
<td>22.0</td>
<td>22.4</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 5.0 x 4</td>
<td>29.6</td>
<td>8.5</td>
<td>2.8</td>
<td>5.9</td>
<td>15.3</td>
<td>15.6</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 5.0 x 6</td>
<td>33.6</td>
<td>8.5</td>
<td>2.8</td>
<td>5.9</td>
<td>17.3</td>
<td>17.6</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 5.0 x 8</td>
<td>37.6</td>
<td>8.5</td>
<td>2.8</td>
<td>5.9</td>
<td>19.3</td>
<td>19.6</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 5.0 x 10</td>
<td>41.6</td>
<td>8.5</td>
<td>2.8</td>
<td>5.9</td>
<td>21.3</td>
<td>21.6</td>
<td>–</td>
</tr>
<tr>
<td>HD(A) 5.0 x 12</td>
<td>45.6</td>
<td>8.5</td>
<td>2.8</td>
<td>5.9</td>
<td>23.3</td>
<td>23.6</td>
<td>–</td>
</tr>
</tbody>
</table>

Note: Piston clevis dimensions are typical both ends on HD(A) 4.0 models.

Cylinder Clevis Dimensions

<table>
<thead>
<tr>
<th>HD</th>
<th>HD(A) 3.0 x 2</th>
<th>HD(A) 5.0 x 12 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>17.0</td>
<td>19.0</td>
</tr>
<tr>
<td>HD(A) 3.0 x 2</td>
<td>8.2</td>
<td>9.2</td>
</tr>
<tr>
<td>HD(A) 5.0 x 12 Series</td>
<td>16.8</td>
<td>16.8</td>
</tr>
</tbody>
</table>

Accessories

HD/HD(A) Series

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-852-8508 Fax: 1-716-662-0406
Enidine’s Heavy Industry (HI) Series buffers safely protect heavy machinery and equipment during the transfer of materials and movement of products. The large-bore, high-capacity buffers are individually designed to decelerate moving loads under various conditions and in compliance with industry mandated safety standards. Control of bridge cranes, trolley platforms, large container transfer and transportation safety stops are typical installations. Industry-proven design technologies, coupled with the experience of a globally installed product base, ensure deliverable performance that exceeds customer expectations.

The oversize bore area results in optimal energy absorption capabilities and increased internal safety factors. State-of-the-art testing facilities ensure integrity of design and product performance.

Features and Benefits

- Compact design smoothly and safely decelerates large energy capacity loads up to 4 million in-lbs. per cycle with standard stroke lengths.
- Engineered to meet OSHA, AISE, CMMA and other safety specifications such as DIN and FEM.
- Nitrogen-charged return system allows for soft deceleration and positive return in a maintenance-free package.
- Wide variety of optional configurations including protective bellows and safety cables.
- Available in custom-ortified non-adjustable models.
- Special epoxy painting and rod materials are available for use in highly corrosive environments.
- Surface treatment (Sea water resistant)
 - Housing: gray color, three-part epoxy
 - Piston Rod: hard-chrome plated steel
- Incorporating optional fluids and seal packages available to expand standard operating temperature range from (0°F to 175°F) to (-30°F to 250°F).
Enidine's Heavy Industry Series (HI) buffers safely protect heavy machinery and equipment during the transfer of materials and movement of products. The large-bore, high-capacity buffers are individually designed to decelerate moving loads under various conditions and in compliance with industry mandated safety standards. Control of bridge cranes, trolley platforms, large container transfer and transportation safety stops are typical installation examples. Industry-proven design technologies, coupled with the experience of a globally installed product base, ensure deliverable performance that exceeds customer expectations.

Prior to HI Series buffer manufacture, computer-simulated response curves are generated to model actual conditions, verify product performance, confirm damping characteristics and generate unique custom-orificed designs that accommodate multi-condition or specific damping requirements.

Characteristics of the HI Series include a nitrogen-charged return system that allows for soft deceleration and positive return in a maintenance-free package. The oversize bore area results in optimal energy absorption capabilities and increased internal safety factors. State-of-the-art testing facilities ensure integrity of design and product performance.

Ordering Information

Example:

- **H1** 120 x 100
- **FR**
- **B**

Application Data

Required for all models:
- Vertical/Horizontal Motion
- Weight
- Impact Velocity
- Propelling Force (if any)
- Cycles/ Hour
- Temperature/ Environment
- Applicable Standards

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-832-8508 Fax: 1-716-662-0406
Heavy Industry Shock Absorbers

HI Series

HI 120 x 1000 Series

<table>
<thead>
<tr>
<th>Model</th>
<th>Catalog No.</th>
<th>Stroke (mm)</th>
<th>Max. Energy (J)</th>
<th>Max. Shock Force (KN)</th>
<th>Return Force (KN)</th>
<th>Extension (mm)</th>
<th>Compression (mm)</th>
<th>Weight (kg)</th>
<th>A₁ (in.)</th>
<th>A₂ (in.)</th>
<th>Z (in.)</th>
<th>H (in.)</th>
<th>ØB (mm)</th>
<th>ØE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI 50 x 50</td>
<td>(350) 27,000</td>
<td>15000</td>
<td>70</td>
<td>140</td>
<td>11</td>
<td>10.3</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>3.36</td>
<td>3.94</td>
<td>2.70</td>
<td>0.59</td>
<td>8.70</td>
</tr>
<tr>
<td>HI 3 x 100</td>
<td>(350) 17,000</td>
<td>12000</td>
<td>70</td>
<td>140</td>
<td>20</td>
<td>15.4</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>3.36</td>
<td>3.94</td>
<td>2.70</td>
<td>0.59</td>
<td>8.70</td>
</tr>
<tr>
<td>HI 100 x 1000</td>
<td>(350) 60,000</td>
<td>37,750</td>
<td>255</td>
<td>30</td>
<td>11</td>
<td>11.4</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>3.36</td>
<td>3.94</td>
<td>2.70</td>
<td>0.59</td>
<td>8.70</td>
</tr>
<tr>
<td>HI 3 x 100</td>
<td>(350) 130,000</td>
<td>37,750</td>
<td>255</td>
<td>30</td>
<td>11</td>
<td>11.4</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td>3.36</td>
<td>3.94</td>
<td>2.70</td>
<td>0.59</td>
<td>8.70</td>
</tr>
</tbody>
</table>

Technical Data

- **Catalog No./Model**: HI 120 x 500
- **Max. Stroke**: (in.)
- **Max. Energy/Cycle**: (J)
- **Max. Shock Force**: (KN)
- **Return Force**: (KN)
- **Extension**: (mm)
- **Compression**: (mm)
- **Weight**: (kg)
- **A₁**: (in.)
- **A₂**: (in.)
- **Z**: (in.)
- **H**: (in.)
- **ØB**: (mm)
- **ØE**: (mm)

MOUNTING FLANGE

- **FR (FLANGE REAR)**
- **SA**
- **SB**

FF (FLANGE FRONT)

- **SA**
- **SB**

Endnote: All dimensions are approximate and subject to variation based on manufacturing tolerances. For precise specifications, consult the latest version of the catalog.
Heavy Industry Shock Absorbers
HI Series

HI 130 x 250 → HI 150 x 1000 Series

Technical Data

<table>
<thead>
<tr>
<th>Catalog No./Model</th>
<th>Max. Stroke in. (mm)</th>
<th>Max. Energy/cycle in.-lbs. (Nm)</th>
<th>Shock Force Extension lbs. (kN)</th>
<th>Compression lbs. (kN)</th>
<th>Return Force Max. lbs. (kN)</th>
<th>Bolt M (Hole Size) in. (mm)</th>
<th>Z in. (mm)</th>
<th>H in. (mm)</th>
<th>B in. (mm)</th>
<th>SA in. (mm)</th>
<th>SB in. (mm)</th>
<th>ØE in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI 130 x 250</td>
<td>8.8 (220)</td>
<td>112,800 (300)</td>
<td>14,400 (720)</td>
<td>720</td>
<td>14,400</td>
<td>159 (35)</td>
<td>35.3</td>
<td>35.2</td>
<td>21.5</td>
<td>1.0</td>
<td>5.12</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 130 x 300</td>
<td>11.8 (300)</td>
<td>112,800 (300)</td>
<td>14,400 (720)</td>
<td>720</td>
<td>14,400</td>
<td>175 (40)</td>
<td>40.3</td>
<td>40.4</td>
<td>23.8</td>
<td>1.0</td>
<td>5.12</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 130 x 400</td>
<td>15.7 (400)</td>
<td>112,800 (300)</td>
<td>14,400 (720)</td>
<td>720</td>
<td>14,400</td>
<td>199 (50)</td>
<td>50.8</td>
<td>50.9</td>
<td>28.9</td>
<td>1.0</td>
<td>5.12</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 130 x 600</td>
<td>23.6 (600)</td>
<td>112,800 (300)</td>
<td>14,400 (720)</td>
<td>720</td>
<td>14,400</td>
<td>–</td>
<td>75.5</td>
<td>41.7</td>
<td>14.7</td>
<td>1.0</td>
<td>5.12</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 130 x 800</td>
<td>31.5 (800)</td>
<td>94,615 (230)</td>
<td>14,400 (720)</td>
<td>720</td>
<td>14,400</td>
<td>–</td>
<td>96.3</td>
<td>53.2</td>
<td>14.7</td>
<td>1.0</td>
<td>5.12</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 150 x 115</td>
<td>4.5 (115)</td>
<td>150,600 (400)</td>
<td>21,600 (1050)</td>
<td>1,125</td>
<td>21,600</td>
<td>124 (20)</td>
<td>20.4</td>
<td>20.4</td>
<td>12.6</td>
<td>0.8</td>
<td>5.91</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 150 x 150</td>
<td>5.9 (150)</td>
<td>150,600 (400)</td>
<td>21,600 (1050)</td>
<td>1,125</td>
<td>21,600</td>
<td>130 (20)</td>
<td>23.9</td>
<td>23.7</td>
<td>14.0</td>
<td>1.0</td>
<td>5.91</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 150 x 400</td>
<td>15.7 (400)</td>
<td>150,600 (400)</td>
<td>21,600 (1050)</td>
<td>1,125</td>
<td>21,600</td>
<td>216 (39)</td>
<td>49.2</td>
<td>49.0</td>
<td>28.0</td>
<td>1.0</td>
<td>5.91</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 150 x 500</td>
<td>19.7 (500)</td>
<td>150,600 (400)</td>
<td>21,600 (1050)</td>
<td>1,125</td>
<td>21,600</td>
<td>–</td>
<td>59.0</td>
<td>30.3</td>
<td>14.7</td>
<td>1.0</td>
<td>5.91</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 150 x 600</td>
<td>23.6 (600)</td>
<td>150,600 (400)</td>
<td>21,600 (1050)</td>
<td>1,125</td>
<td>21,600</td>
<td>–</td>
<td>75.5</td>
<td>41.7</td>
<td>14.7</td>
<td>1.0</td>
<td>5.91</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 150 x 800</td>
<td>31.5 (800)</td>
<td>157,360 (400)</td>
<td>21,600 (1050)</td>
<td>1,125</td>
<td>21,600</td>
<td>–</td>
<td>93.0</td>
<td>48.8</td>
<td>14.7</td>
<td>1.0</td>
<td>5.91</td>
<td>10.63</td>
</tr>
<tr>
<td>HI 150 x 1000</td>
<td>39.4 (1000)</td>
<td>653,590 (400)</td>
<td>21,600 (1050)</td>
<td>1,125</td>
<td>21,600</td>
<td>–</td>
<td>113.4</td>
<td>64.4</td>
<td>14.7</td>
<td>1.0</td>
<td>5.91</td>
<td>10.63</td>
</tr>
</tbody>
</table>
Jarret Series
BC1N, BC5, LR Series

Overview

The design of Jarret Series Industrial Shock Absorber utilizes the unique compression and shear characteristics of specially formulated silicone elastomers.

These characteristics allow the energy absorption and return spring functions to be combined into a single unit without the need for an additional gas or mechanical spring stroke return mechanism.

Advantages:
- Simple design
- High reliability
- High damping coefficient
- Low sensitivity to temperature variances

Applications
Shock protection for all types of industries including:
Defense, Automotive, Railroad, Materials Handling,
Marine, Pulp/Paper, Metal Production and Processing.
Visco-elastic Technology

Jarret Series
BC1N, BC5, LR Series

Visco-elastic technology makes use of the fundamental properties of specially formulated Jarret visco-elastic medium.

Compressibility:
Preloaded spring function
\[F = F_0 + Kx \]

Viscosity:
Shock absorber function
\[F = F_0 + Kx + CV^\alpha \] with \(\alpha \) between 0.1 and 0.4

The two functions can be used separately or in combination, in the same product:

- **Preloaded Spring:** Spring Function Only
 - Hysteresis of between 5% and 10%
 - Reduced weight and space requirement
 - Force/stroke characteristic is independent of actuation speed

- **Shock Absorber Without Spring Return:** Shock Absorbing Function Only
 - Damping devices
 - Blocking devices

- **Preloaded Spring Shock Absorbers:** Combine Spring and Shock Absorber Functions
 - Dissipate between 30% and 100% of energy
 - Force/stroke characteristics remain relatively unchanged between 15°F and 160°F (-10°C and +70°C)

Spring and shock absorber products are capable of functioning between 15°F and 160°F (-10°C and +70°C). However, standard products are not intended for use over the full rated temperature range. Consult factory for special product considerations required to accommodate operation over a wide temperature range.
Jarret Shock Absorbers

BC1N Series

Technical Data

Catalog No./Metric

Model

Table:

<table>
<thead>
<tr>
<th>Model</th>
<th>L1 (mm)</th>
<th>L2 (mm)</th>
<th>L3 (mm)</th>
<th>L4 (mm)</th>
<th>L5 (mm)</th>
<th>L6 (mm)</th>
<th>R1 (mm)</th>
<th>D1 (mm)</th>
<th>D2 (mm)</th>
<th>D3 (mm)</th>
<th>D4 (mm)</th>
<th>D5 (mm)</th>
<th>D6 (mm)</th>
<th>D7 (mm)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1ZN</td>
<td>2.95</td>
<td>2.1</td>
<td>2.1</td>
<td>0.39</td>
<td>0.28</td>
<td>1.7</td>
<td>0.75</td>
<td>211</td>
<td>1,213</td>
<td>1,349</td>
<td>2,473</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC1BN</td>
<td>4.7</td>
<td>3.9</td>
<td>3.8</td>
<td>0.47</td>
<td>0.31</td>
<td>3.4</td>
<td>–</td>
<td>1.0</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC1HN</td>
<td>6.9</td>
<td>5.5</td>
<td>5.4</td>
<td>0.47</td>
<td>0.31</td>
<td>3.4</td>
<td>–</td>
<td>1.0</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC1DN</td>
<td>6.9</td>
<td>5.5</td>
<td>5.4</td>
<td>0.47</td>
<td>0.31</td>
<td>3.4</td>
<td>–</td>
<td>1.0</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC1EN</td>
<td>8.4</td>
<td>6.6</td>
<td>6.5</td>
<td>0.47</td>
<td>0.31</td>
<td>3.4</td>
<td>–</td>
<td>1.0</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC1FN</td>
<td>13.3</td>
<td>10.1</td>
<td>9.7</td>
<td>0.47</td>
<td>0.31</td>
<td>3.4</td>
<td>–</td>
<td>1.0</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>L1 (mm)</th>
<th>L2 (mm)</th>
<th>L3 (mm)</th>
<th>L4 (mm)</th>
<th>L5 (mm)</th>
<th>L6 (mm)</th>
<th>R1 (mm)</th>
<th>D1 (mm)</th>
<th>D2 (mm)</th>
<th>D3 (mm)</th>
<th>D4 (mm)</th>
<th>D5 (mm)</th>
<th>D6 (mm)</th>
<th>D7 (mm)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1ZN</td>
<td>75</td>
<td>53</td>
<td>52</td>
<td>10</td>
<td>7</td>
<td>43</td>
<td>19</td>
<td>M25 x 1.5</td>
<td>20</td>
<td>38</td>
<td>57</td>
<td>41</td>
<td>7</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>BC1BN</td>
<td>120</td>
<td>98</td>
<td>96</td>
<td>12</td>
<td>8</td>
<td>86</td>
<td>25</td>
<td>M35 x 1.5</td>
<td>32</td>
<td>52</td>
<td>80</td>
<td>60</td>
<td>9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>BC1HN</td>
<td>120</td>
<td>98</td>
<td>96</td>
<td>12</td>
<td>8</td>
<td>86</td>
<td>25</td>
<td>M35 x 1.5</td>
<td>32</td>
<td>52</td>
<td>80</td>
<td>60</td>
<td>9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>BC1DN</td>
<td>120</td>
<td>98</td>
<td>96</td>
<td>12</td>
<td>8</td>
<td>86</td>
<td>25</td>
<td>M35 x 1.5</td>
<td>32</td>
<td>52</td>
<td>80</td>
<td>60</td>
<td>9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>BC1EN</td>
<td>120</td>
<td>98</td>
<td>96</td>
<td>12</td>
<td>8</td>
<td>86</td>
<td>25</td>
<td>M35 x 1.5</td>
<td>32</td>
<td>52</td>
<td>80</td>
<td>60</td>
<td>9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>BC1FN</td>
<td>120</td>
<td>98</td>
<td>96</td>
<td>12</td>
<td>8</td>
<td>86</td>
<td>25</td>
<td>M35 x 1.5</td>
<td>32</td>
<td>52</td>
<td>80</td>
<td>60</td>
<td>9</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>L1 (mm)</th>
<th>L2 (mm)</th>
<th>L3 (mm)</th>
<th>L4 (mm)</th>
<th>L5 (mm)</th>
<th>L6 (mm)</th>
<th>R1 (mm)</th>
<th>D1 (mm)</th>
<th>D2 (mm)</th>
<th>D3 (mm)</th>
<th>D4 (mm)</th>
<th>D5 (mm)</th>
<th>D6 (mm)</th>
<th>D7 (mm)</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1ZN</td>
<td>211</td>
<td>1,213</td>
<td>1,349</td>
<td>2,473</td>
<td></td>
</tr>
<tr>
<td>BC1BN</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>BC1HN</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>BC1DN</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>BC1EN</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>BC1FN</td>
<td>1,149</td>
<td>1,291</td>
<td>2,600</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Spring and shock absorber products are capable of functioning between 15°F and 160°F (-10°C and + 70°C). However, standard products are not intended for use over the full rated temperature range.
- Consult factory for special product considerations required to accommodate operation over a wide temperature range.

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-852-8508 Fax: 1-716-662-0406
Jarret Shock Absorbers
BC1N Series

Application Worksheet

Based On
- Impact velocity (V) : 2 m/s
- Operating temperature : 20° to +40°C
- Surface protection : Electrolytic zinc
- Dynamic performance diagram

Force kN

Rdymax

Rdy0

Stroke mm

Symbols:
- En = Energy Capacity (kJ)
- C = Maximum Stroke (mm)
- Rdy = Dynamic Reaction Force (kN)

2 - Energy Calculation

\[E = \frac{1}{2} M e V e^2 \]

3 - Allowable Impact Velocity

IF < \(20 \times \frac{E}{En} \) impacts/hour

4 - Effective (Actual) Stroke Calculation

\[C e = C e + \left(\frac{E}{En [0,03 V + 0,24] + 1,36 - 1,71} \right) \]

5 - Calculation of Effective Reaction Force Rdy_e

\[Rdy_e = \left(\frac{Rdymax - Rdy0}{C} \right) \times C e + Rdy0 (0,1V + 0,8) \]

6 - Application Example

Given data: Effective mass = 15 t
Effective velocity = 0,8 m/s
Impact frequency: 25 impacts/hour

1. Energy dissipated per impact: \(E = \frac{1}{2} (15)(0,8) = 4,8 \) kJ
2. BC1FN Selected
3. Allowable impact frequency IF < \(20 \times \frac{7}{4,8} = 29 \)
4. Effective (Actual) Stroke:
 \[C e = 60 \left(\frac{4,8}{7 [0,03 x 0,8 + 0,24] + 1,36 - 1,17} \right) \]
 \[C e = 49 \) mm
5. Effective Reaction Force:
 \[Rdy_e = \left[(150 - 90) x 49 + 90 \right] (0,1 x 0,8 + 0,8) \]
 \[Rdy_e = 122 \) kN
6. Compare standards to results:

<table>
<thead>
<tr>
<th>BC1FN APPLICATION</th>
<th>E (kJ)</th>
<th>C (mm)</th>
<th>Rdymax (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>60</td>
<td>150</td>
</tr>
</tbody>
</table>

All performance characteristics can be modified. Please advise us of your specific requirements.
Jarret Shock Absorbers
BCS Series

Technical Data

BCSA → BCSE Series

<table>
<thead>
<tr>
<th>Catalog No./ Model</th>
<th>Max Return Force</th>
<th>Stroke</th>
<th>Compression</th>
<th>Stroke</th>
<th>Return Force</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs. (kN)</td>
<td>in. (mm)</td>
<td>lbs. (kN)</td>
<td>in. (mm)</td>
<td>lbs. (kN)</td>
<td>lbs. (kN)</td>
</tr>
<tr>
<td>BC5A-105</td>
<td>221,268</td>
<td>4.1</td>
<td>4,159</td>
<td>37,543</td>
<td>68,671</td>
<td>121,367</td>
</tr>
<tr>
<td></td>
<td>(250)</td>
<td>(105)</td>
<td>(18,5)</td>
<td>(167)</td>
<td>(310)</td>
<td>(540)</td>
</tr>
<tr>
<td>BC5B-130</td>
<td>442,537</td>
<td>4.7</td>
<td>13,939</td>
<td>58,416</td>
<td>69,610</td>
<td>121,367</td>
</tr>
<tr>
<td></td>
<td>(325)</td>
<td>(120)</td>
<td>(50)</td>
<td>(219)</td>
<td>(99)</td>
<td>(190)</td>
</tr>
<tr>
<td>BC5C-140</td>
<td>663,836</td>
<td>5.5</td>
<td>11,915</td>
<td>72,827</td>
<td>89,524</td>
<td>153,766</td>
</tr>
<tr>
<td></td>
<td>(310)</td>
<td>(140)</td>
<td>(49)</td>
<td>(202)</td>
<td>(218)</td>
<td>(376)</td>
</tr>
<tr>
<td>BC5D-160</td>
<td>885,975</td>
<td>6.3</td>
<td>13,976</td>
<td>85,437</td>
<td>105,640</td>
<td>184,543</td>
</tr>
<tr>
<td></td>
<td>(410)</td>
<td>(160)</td>
<td>(60)</td>
<td>(215)</td>
<td>(118)</td>
<td>(208)</td>
</tr>
<tr>
<td>BC5E-180</td>
<td>1,207,612</td>
<td>7.1</td>
<td>26,909</td>
<td>112,616</td>
<td>143,878</td>
<td>247,299</td>
</tr>
<tr>
<td></td>
<td>(650)</td>
<td>(180)</td>
<td>(117)</td>
<td>(186)</td>
<td>(240)</td>
<td>(400)</td>
</tr>
</tbody>
</table>

Impact Speed: BC5 Series shock absorbers are designed for impact velocities of up to 4 m/sec. Higher impact velocities require custom modification.

Spring and shock absorber products are capable of functioning between 15°F and 160°F (-10°C and +70°C). However, standard products are not intended for use over the full rated temperature range. Consult factory for special product considerations required to accommodate operation over a wide temperature range.
Jarret Shock Absorbers
BC5 Series

Application Worksheet

Based On
☐ Impact velocity (V) : 2 m/s
☐ Operating temperature : 20° to + 40°C
☐ Surface protection : Electrolytic zinc
☐ Dynamic performance diagram

1. Energy Calculation

\[E = \frac{1}{2} m v^2 \]

2. Allowable Impact Frequency (IF)

\[IF < 15 \times \frac{E}{V} \text{ impacts/hour} \]

3. Effective Stroke Calculation

\[C_e = C + 1.36 \times 1.17 \]

4. Calculation of Effective Reaction \(R_{dy_e} \)

\[R_{dy_e} = \left(\frac{R_{dy_{max}} - R_{dy_0}}{C} \times C_e + R_{dy_0} \right) \times 0.1 \text{V} + 0.8 \]

5. Application Example

Data: Two shock absorbers in series, Effective mass \(m = 300 \text{t} \), Impact speed \(v = 1.2 \text{ m/s} \) (which is an impact of 0.6 m/s on each shock absorber), Impact frequency = 15 impacts/hour, Maximum allowable structural load 1000 kN

1. \[E = \frac{1}{2} \left(\frac{1}{2} \times 300 \text{ x } 1.2^2 \right) = 108 \text{ kJ} \]

2. Selection BC5E-180

3. Maximum allowable impact frequency is \(15 \times \frac{150}{108} \) impacts/hour. Therefore 15 impacts/hour is acceptable.

\[15 < 15 \times \frac{150}{108} \]

4. Effective (actual) stroke is 167 mm

\[C_e = 180 \times \left(\frac{150}{(1100 - 640) \times \frac{156}{180} + 0.1 \times 0.6 + 0.8} \right) = 156 \text{ mm} \]

5. \[R_{dy_e} = \left(\frac{1100 - 640}{156} \times \frac{150}{180} + 0.1 \times 0.6 + 0.8 \right) \times 0.1 \text{V} + 0.8 \]

\[R_{dy_e} = 893 \text{ kN} < 1000 \text{ kN} \]

6. Compare standards to results:

<table>
<thead>
<tr>
<th>BC5E-180</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (kJ) > 150</td>
<td>108</td>
</tr>
<tr>
<td>IF > 21</td>
<td>15</td>
</tr>
<tr>
<td>C (mm) > 180</td>
<td>156</td>
</tr>
<tr>
<td>Rdymax (kN) > 1100</td>
<td>893</td>
</tr>
</tbody>
</table>

All performance characteristics can be modified. Please advise us of your specific requirements.
Technical Data

Jarret Shock Absorbers

XLR Series

- **Impact Speed**: Types XLR and BCLR Series shock absorbers are designed for impact velocities of up to 2 m/sec.
- **Higher impact velocities require custom modification.**

Return Force

<table>
<thead>
<tr>
<th>Model</th>
<th>Impact Force</th>
<th>Stroke Extension</th>
<th>Compression Rdy</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLR6-150</td>
<td>53,104</td>
<td>5.9</td>
<td>652</td>
</tr>
<tr>
<td>XLR12-150</td>
<td>106,209</td>
<td>5.9</td>
<td>1,866</td>
</tr>
<tr>
<td>XLR12-200</td>
<td>106,209</td>
<td>7.9</td>
<td>1,259</td>
</tr>
<tr>
<td>XLR25-200</td>
<td>221,269</td>
<td>7.9</td>
<td>3,012</td>
</tr>
<tr>
<td>XLR25-270</td>
<td>221,269</td>
<td>10.6</td>
<td>2,495</td>
</tr>
<tr>
<td>XLR50-275</td>
<td>442,537</td>
<td>10.8</td>
<td>4,429</td>
</tr>
<tr>
<td>XLR50-400</td>
<td>442,537</td>
<td>15.7</td>
<td>2,900</td>
</tr>
<tr>
<td>XLR100-400</td>
<td>885,075</td>
<td>15.7</td>
<td>5,620</td>
</tr>
<tr>
<td>XLR100-600</td>
<td>885,075</td>
<td>23.6</td>
<td>2,608</td>
</tr>
<tr>
<td>XLR150-800</td>
<td>1,327,612</td>
<td>31.5</td>
<td>5,216</td>
</tr>
</tbody>
</table>

Shock Force

- **Rdymax**
- **Max Shock Force**: lbs. (kN)
- **Max Energy Capacity**: in-lbs. (kJ)

Rear Flange Mounting - Fc on Request.

- Spring and shock absorber products are capable of functioning between 15°F and 160°F (-10°C and + 70°C). However, standard products are not intended for use over the full rated temperature range.
- Consult factory for special product considerations required to accommodate operation over a wide temperature range.

Catalog Info

<table>
<thead>
<tr>
<th>Catalog No./ Model</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
<th>L8</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLR6-150</td>
<td>16.1</td>
<td>9.1</td>
<td>7.0</td>
<td>0.75</td>
<td>0</td>
<td>0.39</td>
<td>3.5</td>
<td>2.8</td>
<td>2.0</td>
<td>3.5</td>
<td>1.5</td>
<td>2.0</td>
<td>0.35</td>
<td>9.3</td>
</tr>
<tr>
<td>XLR12-150</td>
<td>18.9</td>
<td>11.2</td>
<td>7.7</td>
<td>0.71</td>
<td>0.60</td>
<td>0.47</td>
<td>4.3</td>
<td>3.3</td>
<td>3.0</td>
<td>3.5</td>
<td>2.2</td>
<td>3.1</td>
<td>0.43</td>
<td>24.3</td>
</tr>
<tr>
<td>XLR12-200</td>
<td>20.9</td>
<td>11.2</td>
<td>9.6</td>
<td>0.71</td>
<td>0.60</td>
<td>0.47</td>
<td>4.3</td>
<td>3.3</td>
<td>3.0</td>
<td>3.5</td>
<td>2.2</td>
<td>3.1</td>
<td>0.43</td>
<td>24.3</td>
</tr>
<tr>
<td>XLR25-200</td>
<td>24.4</td>
<td>14.6</td>
<td>9.8</td>
<td>0.79</td>
<td>0.71</td>
<td>0.47</td>
<td>5.3</td>
<td>4.1</td>
<td>3.5</td>
<td>4.3</td>
<td>2.8</td>
<td>4.0</td>
<td>0.6</td>
<td>44.1</td>
</tr>
<tr>
<td>XLR25-270</td>
<td>27.2</td>
<td>14.6</td>
<td>12.6</td>
<td>0.79</td>
<td>0.71</td>
<td>0.47</td>
<td>5.3</td>
<td>4.1</td>
<td>3.5</td>
<td>4.3</td>
<td>2.8</td>
<td>4.0</td>
<td>0.6</td>
<td>55.1</td>
</tr>
<tr>
<td>XLR50-275</td>
<td>33.7</td>
<td>20.5</td>
<td>13.2</td>
<td>1.0</td>
<td>0.79</td>
<td>0.60</td>
<td>6.9</td>
<td>5.5</td>
<td>4.3</td>
<td>5.9</td>
<td>3.4</td>
<td>4.7</td>
<td>0.71</td>
<td>88.2</td>
</tr>
<tr>
<td>XLR50-400</td>
<td>38.6</td>
<td>20.5</td>
<td>18.1</td>
<td>1.0</td>
<td>0.79</td>
<td>0.60</td>
<td>6.9</td>
<td>5.5</td>
<td>4.3</td>
<td>5.9</td>
<td>3.4</td>
<td>4.7</td>
<td>0.71</td>
<td>88.2</td>
</tr>
<tr>
<td>XLR100-400</td>
<td>53.9</td>
<td>35.8</td>
<td>18.1</td>
<td>1.0</td>
<td>0.79</td>
<td>0.60</td>
<td>6.9</td>
<td>5.5</td>
<td>4.3</td>
<td>5.9</td>
<td>3.4</td>
<td>4.7</td>
<td>0.71</td>
<td>143.3</td>
</tr>
<tr>
<td>XLR100-600</td>
<td>61.8</td>
<td>35.8</td>
<td>26.0</td>
<td>1.0</td>
<td>0.79</td>
<td>0.60</td>
<td>6.9</td>
<td>5.5</td>
<td>4.3</td>
<td>5.9</td>
<td>3.4</td>
<td>4.7</td>
<td>0.71</td>
<td>143.3</td>
</tr>
<tr>
<td>XLR150-800</td>
<td>103.9</td>
<td>70.1</td>
<td>33.9</td>
<td>1.0</td>
<td>0.79</td>
<td>0.60</td>
<td>6.9</td>
<td>5.5</td>
<td>4.3</td>
<td>5.9</td>
<td>3.4</td>
<td>4.7</td>
<td>0.71</td>
<td>253.5</td>
</tr>
</tbody>
</table>
Jarret Shock Absorbers
XLR Series

Application Worksheet

XLR6-150 → XLR-800 Series

Based On
☐ Impact velocity (V) : 2 m/s
☐ Operating temperature : 20° to + 40°C
☐ Surface protection : Electrolytic zinc & Painting
☐ Dynamic performance diagram

Symbols:
En = Energy Capacity (kJ)
C = Maximum Stroke (mm)
Rdy = Dynamic Reaction Force (kN)

1 - Energy Calculation
\[E = \frac{1}{2} \cdot M_e \cdot V^2 \]

2 - Allowable Impact Frequency (IF)
\[IF < 8 \times \frac{E}{En} \text{ Impacts/hour} \]

3 - Required Stroke Calculation
\[Ce = C + 1.83 - 1.35 \]

4 - Calculation of Effective Reaction Rdy_e
\[Rdy_e = \left(\frac{Rdymax \cdot Rdy_0}{C} \right) \times Ce + Rdy_0 \]

5 - Application Example Data:
Effective mass = 30 t
Effective impact speed = 2.2 m/s
Maximum allowable structural force = 350 kN
Impact frequency = 10/hr

1: Energy dissipated/impact is 72.6 kJ
\[E = \frac{1}{2} \times 15 \times (2.2)^2 \]
\[E = 72.6 \text{ kJ} \]

2: XLR100-400 selected

3: Maximum allowable impact frequency
\[IF < 8 \times 100 / 72.6 = 11 \]
(10 x 11 impacts/hour is acceptable)

4: Effective (actual) stroke:
\[Ce = 400 \times \left(\frac{72.6}{100 (0.027 \times 2.7 + 0.22)} + 1.83 - 1.35 \right) \]
\[Ce = 290.3 \text{ mm} \]

5: Rdye = \[\left(\frac{320 - 175}{400} \right) \times 290.3 + 175 \times 0.1 \times 2.2 + 0.8 \]
\[Rdye = 285.8 \text{ kN} \]

6. Compare standards to results:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Standard</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective mass (kN)</td>
<td>XLR100-400</td>
<td>> 72.6</td>
</tr>
<tr>
<td>IF</td>
<td></td>
<td>> 11</td>
</tr>
<tr>
<td>C (mm)</td>
<td>XLR100-400</td>
<td>> 301.8</td>
</tr>
<tr>
<td>Rdymax (kN)</td>
<td></td>
<td>> 290.1</td>
</tr>
</tbody>
</table>

Note: maximum allowed structural load is 350 kN > 290.1 kN

All performance characteristics can be modified. Please advise us of your specific requirements.

Jarret Shock Absorbers
BCLR Series

BCLR Series - Front Flange Mount - Fc

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLR-100</td>
<td>(100) (300) (225) (160) (125) (100)</td>
<td>(65) (195) (105) (75) (60) (50)</td>
<td>(75) (225) (135) (90) (75) (60)</td>
</tr>
<tr>
<td>BCLR-150</td>
<td>(150) (450) (300) (200) (150) (125)</td>
<td>(100) (300) (180) (120) (90) (75)</td>
<td>(125) (400) (275) (180) (150) (125)</td>
</tr>
<tr>
<td>BCLR-220S</td>
<td>(220) (600) (400) (250) (200) (160)</td>
<td>(125) (350) (250) (175) (150) (125)</td>
<td>(150) (500) (350) (250) (225) (175)</td>
</tr>
<tr>
<td>BCLR-250</td>
<td>(250) (750) (500) (300) (250) (200)</td>
<td>(150) (400) (300) (200) (175) (150)</td>
<td>(175) (600) (450) (300) (250) (225)</td>
</tr>
<tr>
<td>BCLR-400</td>
<td>(400) (1250) (800) (500) (400) (300)</td>
<td>(200) (600) (400) (250) (225) (175)</td>
<td>(225) (1250) (900) (600) (500) (400)</td>
</tr>
<tr>
<td>BCLR-600</td>
<td>(600) (1500) (1000) (650) (500) (400)</td>
<td>(300) (900) (600) (400) (350) (300)</td>
<td>(300) (1500) (1000) (700) (600) (500)</td>
</tr>
<tr>
<td>BCLR-1000</td>
<td>(1000) (2500) (1750) (1250) (1000) (800)</td>
<td>(500) (1500) (1000) (700) (600) (500)</td>
<td>(500) (2500) (1800) (1350) (1250) (1000)</td>
</tr>
</tbody>
</table>

HI-HD-Catalog:HD-HI-Catalog 4/6/11 10:40 AM Page 41

LR Series

www.enidine.com Email: industrialsales@enidine.com Tel.: 1-800-852-8508 Fax: 1-716-662-0406

Impact Speed: Types XLR and BCLR Series shock absorbers are designed for impact velocities of up to 2 m/sec. Higher impact velocities require custom modification.

Spring and shock absorber products are capable of functioning between 15°F and 160°F (-10°C and + 70°C). However, standard products are not intended for use over the full rated temperature range.

Consult factory for special product considerations required to accommodate operation over a wide temperature range.
Jarret Shock Absorbers
BCLR Series

Based On
- Impact velocity (V) : 2 m/s
- Operating temperature : 20° to + 40°C
- Surface protection : Electrolytic zinc & Painting
- Dynamic performance diagram

Application Worksheet

1 - Energy Calculation

\[E = \frac{1}{2} M e V^2 \]

2 - Allowable Impact Frequency (IF)

\[IF < 8 \times \frac{E}{E_{impacts/hour}} \]

3 - Required Stroke Calculation

\[Ce = C + \left(\frac{E}{400 \times (0,027 \times V + 0,22)} \right)^{1,83 - 1,35} \]

4 - Calculation of Effective Reaction \(R_{dy_e} \)

\[R_{dy_e} = \left(\frac{R_{dymax} - R_{dy0}}{C} \right) \times Ce + R_{dy0} \times (0,1V + 0,8) \]

5 - Application Example:

Effective mass = 75 t
Effective impact speed = 2,7
Maximum allowable structural force: 650 kN
Impact frequency = 10/hr

1: Energy dissipated/impact is 274 kJ
2: BCLR-400 selected
3: Maximum allowable impact frequency
 \(IF < 8 \times 400 / 274 = 12 \) (10 impacts/hour is acceptable)
 \(10 < 12 \)
4: Effective (actual) stroke:
 \(Ce = 850 \times \left(\frac{274}{400 \times (0,027 \times 2,7 + 0,22)} \right)^{1,83 - 1,35} \)
 \(Ce = 587 \text{mm} \)
5: \(R_{dy} = 520 \times (0,1 \times 2,7 + 0,8) = 556 \text{kN} \)
 (which is less than maximum allowable reaction force of 650 kN)
6. Compare standards to results:

<table>
<thead>
<tr>
<th>BCLR-400</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (kJ)</td>
<td>400 > 274</td>
</tr>
<tr>
<td>IF</td>
<td>12 > 10</td>
</tr>
<tr>
<td>C (mm)</td>
<td>850 > 587</td>
</tr>
<tr>
<td>Rdymax (kN)</td>
<td>600 > 556</td>
</tr>
</tbody>
</table>

Note: maximum allowed structural load is 650 kN > 556 kN

All performance characteristics can be modified.
Please advise us of your specific requirements.
Heavy Industry Products
Application Worksheet

APPLICATION DESCRIPTION

- Motion Direction (Check One):
 - [] Horizontal
 - [] Vertical
 - [] Incline
 - [] Rotary Horizontal
 - [] Rotary Vertical

- Weight (Min./Max.): ____________________________ (lbs.)(Kg)

- Cycle Rate: ____________________________ (cycles/hour)

- Additional Propelling Force (If Known): ____________________________ (lbs.)(N)

- Air Cyl: Bore _____ (in.)(mm) Max. Pressure _____ (psi)(bar) Rod Dia. _____ (in.)(mm)

- Hydraulic Cyl: Bore _____ (in.)(mm) Max. Pressure _____ (psi)(bar) Rod Dia. _____ (in.)(mm)

- Motor: _________ (hp)(kW) Torque: _________ (in-lbs.)(Nm)

- Ambient Temp.: ____________________________ °F (°C)

- Environmental Considerations: __

SHOCK ABSORBER APPLICATION

- Number of Shock Absorbers to Stop Load

- Impact Velocity (min./max.): ____________________________ (in./sec.)(m/sec.)

- Shock Absorber Stroke Requirements: ____________________________ (in.)(mm)

- G Load Requirements: ____________________________ (G)(m/sec²)

CONTACT

- DEPT/TITLE: ____________________________

- COMPANY: __

- ADDRESS: __

- TEL: ____________________________ FAX: ____________________________

- EMAIL: __

- PRODUCTS MANUFACTURED: __

APPLICATION SKETCHES / NOTES

The Enidine Application Worksheet makes shock absorber sizing and selection easier. Fax, phone, or mail worksheet data to Enidine headquarters or your nearest Enidine subsidiary/affiliate or distributor. Upon Enidine’s receipt of this worksheet, you will receive a detailed analysis of your application and product recommendations. (For custom design projects, Enidine representatives will consult with you for specification requirements.)

Fax, phone, or mail worksheet data to Enidine headquarters or your nearest Enidine subsidiary/affiliate or distributor. (See catalog back cover for Enidine locations, or visit www.enidine.com for a list of Enidine distributors.)

(All Data Taken at Shock Absorber)
Applications:

- Control of bridge cranes
- Trolley platforms
- Large container transfer
- Automated aisle stacker cranes
- Cab operated bridge cranes
- Ship to shore container cranes
- Overhead bridge cranes
- Gantry cranes
- Ship to shore container cranes
- Transportation end stops